Please use this identifier to cite or link to this item:
http://repository.ipb.ac.id/handle/123456789/165212| Title: | Pemodelan Pendapatan Ekonomi Sektor Pariwisata Indonesia Tahun 2023 Menggunakan Model Mixed Geographically Weighted Regression |
| Other Titles: | Modeling Economic Revenue of the Indonesian Tourism Sector in 2023 Using a Mixed Geographically Weighted Regression Model |
| Authors: | Silvianti, Pika Anisa, Rahma Haristiyanto, Farik Firsteadi |
| Issue Date: | 2025 |
| Publisher: | IPB University |
| Abstract: | Pendapatan Domestik Regional Bruto (PDRB) merupakan sebuah alat tolak ukur pertumbuhan ekonomi suatu daerah yang dapat digunakan sebagai landasan penyusunan rencana pembangunan daerah. Adanya ketimpangan nilai PDRB pada wilayah antarprovinsi menunjukkan kemungkinan adanya kondisi heterogenitas spasial. Umumnya, kondisi heterogenitas spasial dapat diatasi dengan melakukan pemodelan Geographically Weighted Regression (GWR); akan tetapi GWR memiliki kelemahan dalam menangani kondisi heterogenitas spasial yang lebih kompleks disertai potensi bias penduga. Oleh karena itu, model Mixed Geographically Weighted Regression (MGWR) akan digunakan karena mampu mengakomodasi perbedaan taraf parameter pada model. Penelitian ini bertujuan menentukan peubah-peubah yang berpengaruh signifikan terhadap PDRB provinsi di Indonesia tahun 2023. Penelitian ini menggunakan data PDRB dan kepariwisataan yang diterbitkan oleh Badan Pusat Statistik tahun 2024. Hasil penelitian menunjukkan bahwa model MGWR dengan fungsi pembobot kernel adaptive Gaussian memiliki ukuran kebaikan AICc sebesar 329,163 dan Adj.R^2 sebesar 0,910. Seluruh peubah penjelas bertaraf global dan lokal berpengaruh signifikan pada setiap wilayah provinsi, dengan jumlah objek wisata alam dan jumlah pengusaha katering merupakan peubah berpengaruh signifikan pada taraf lokal, sementara jumlah objek wisata budaya dan jumlah pengusaha restoran merupakan peubah berpengaruh signifikan pada taraf global terhadap PDRB provinsi di Indonesia. The Gross Domestic Regional Product (GDRP) serves as a key indicator of a region’s economic growth and is often used as a foundation for regional development planning. The disparity in GDRP values across provinces suggest the presence of spatial heterogeneity. While Geographically Weighted Regression (GWR) is commonly used to address spatial heterogeneity, it has limitations in handling complex variations and may produce biased estimates. Therefore, the Mixed Geographically Weighted Regression (MGWR) model is applied, as it allows parameters to vary at different spatial levels. This study aims to identify the variables that significantly influence the GDRP of Indonesian provinces in 2023. The study uses GDRP and tourism data published by Badan Pusat Statistik (BPS) Indonesia in 2024. The results showed that MGWR model with an adaptive Gaussian kernel weighting function achieved an AICc value of 329,163 and an Adj.R^2 of 0,910. All explanatory variables, both globally and locally, significantly impacted GDRP across provinces. Specifically, the number of natural tourist attractions and catering businesses were locally significant, while the number of cultural tourist attractions and restaurant businesses were globally significant in affecting provincial GRDP in Indonesia. |
| URI: | http://repository.ipb.ac.id/handle/123456789/165212 |
| Appears in Collections: | UT - Statistics and Data Sciences |
Files in This Item:
| File | Description | Size | Format | |
|---|---|---|---|---|
| cover_G1401211015_2d15dc04cbff482f9719b4727a6a394b.pdf | Cover | 3 MB | Adobe PDF | View/Open |
| fulltext_G1401211015_209fa6bd79af48839e7cb75fa4604759.pdf Restricted Access | Fulltext | 578.38 kB | Adobe PDF | View/Open |
| lampiran_G1401211015_0d7416232da743e293a830a5801c88b3.pdf Restricted Access | Lampiran | 1.9 MB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.