Please use this identifier to cite or link to this item: http://repository.ipb.ac.id/handle/123456789/165119
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorSilvianti, Pika
dc.contributor.advisorFirdawanti, Aulia Rizki
dc.contributor.authorHamid, Yogi Nur
dc.date.accessioned2025-07-16T08:44:44Z
dc.date.available2025-07-16T08:44:44Z
dc.date.issued2025
dc.identifier.urihttp://repository.ipb.ac.id/handle/123456789/165119
dc.description.abstractRegresi bekerja sangat baik pada data yang telah diketahui polanya, namun tidak semua data dapat diketahui polanya sehingga perlu adanya pendekatan fungsi tertentu. Dalam kasus ini, pendekatan nonparametrik digunakan sebagai alternatif dari regresi parametrik. Salah satu fungsi yang sering digunakan pada pendekatan regresi nonparameterik yaitu spline. Fungsi spline memiliki fleksibilitas yang sangat baik dalam menduga kurva regresi dengan pola yang berubah-ubah. Kasus ini sering kali dijumpai pada data perekonomian, salah satunya IHSG. IHSG mencerminkan kondisi kinerja saham di pasar modal dan sangat bergantung pada faktor internal dan eksternal. Penelitian ini bertujuan menerapkan pendekatan regresi nonparametrik spline untuk memodelkan IHSG berdasarkan faktor-faktor yang memengaruhinya. Basis fungsi yang digunakan yaitu truncated power dan B-spline. Titik knot optimal ditentukan berdasarkan kriteria Generalized Cross Validation (GCV) minimum. Pendugaan parameter ditentukan menggunakan metode Ordinary Least Square (OLS) dengan orde linier. Hasil menunjukkan bahwa model spline truncated dan B-spline mampu menangani permasalahan terkait fleksibilitas dalam menangkap pola hubungan nonlinier dengan nilai adjusted ??2 masing-masing 85,32% dan 91,14%. Model terbaik yaitu model B-spline dengan nilai MAPE latih dan uji terendah masing-masing sebesar 3,01% dan 5,63%. Berdasarkan uji signifikansi parameter, diperoleh empat peubah yang berpengaruh signifikan terhadap IHSG, yaitu inflasi, DJIA, harga emas dunia, dan harga minyak dunia.
dc.description.abstractRegression works effectively when the data pattern is known. However, not all data exhibit clear patterns, thus requiring specific functional approaches. In such cases, nonparametric regression is employed as an alternative to parametric regression. One of the most commonly used functions in nonparametric regression is the spline function, which offers excellent flexibility in estimating regression curves with varying patterns. This condition frequently arises in economic data, including the Jakarta Composite Index (JCI), which reflects stock market performance and is highly influenced by both internal and external factors. This study aims to apply a nonparametric spline regression approach to model the JCI based on its influencing factors. The basis functions used are truncated power spline and B-spline. The optimal knot positions are determined using the minimum Generalized Cross Validation (GCV) criterion. Parameter estimation is performed using the Ordinary Least Squares (OLS) method with linear order. The results show that both truncated spline and B-spline models are capable of addressing flexibility in capturing nonlinear relationships, with adjusted ??2 values of 85.32% and 91.14%, respectively. The best performing model is the B-spline model, achieving the lowest training and testing MAPE values of 3.01% and 5.63%, respectively. Based on the parameter significance test, four variables are found to significantly influence the JCI: inflation, DJIA, world gold price, and world oil price.
dc.description.sponsorship
dc.language.isoid
dc.publisherIPB Universityid
dc.titlePenerapan Regresi Nonparametrik Spline Truncated dan B-Spline Dalam Memodelkan Faktor-Faktor Yang Memengaruhi Indeks Harga Saham Gabunganid
dc.title.alternativeApplication of Nonparametric Regression With Spline Truncated and B-Spline in Modeling Factors Affecting Jakarta Composite Index
dc.typeSkripsi
dc.subject.keywordIHSGid
dc.subject.keywordpemodelanid
dc.subject.keywordB-splineid
dc.subject.keywordspline truncatedid
dc.subject.keywordtitik knot optimalid
Appears in Collections:UT - Statistics and Data Sciences

Files in This Item:
File Description SizeFormat 
cover_G1401211043_9f1da5ce2570494186caf8e9bda49925.pdfCover603.79 kBAdobe PDFView/Open
fulltext_G1401211043_4cf311616bf44a09afef9330fd295bcb.pdf
  Restricted Access
Fulltext947.47 kBAdobe PDFView/Open
lampiran_G1401211043_6bc4a0c2189f4b559690b5d1d7e1a415.pdf
  Restricted Access
Lampiran605.97 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.