Please use this identifier to cite or link to this item: http://repository.ipb.ac.id/handle/123456789/164370
Title: Prediksi Harga Penutupan Beberapa Saham Menggunakan Random Forest dan Artificial Neural Network
Other Titles: Stock Closing Price Prediction Using Random Forest and Artificial Neural Network
Authors: Ruhiyat
Khatizah, Elis
Faradita, Marsya
Issue Date: 2025
Publisher: IPB University
Abstract: Prediksi harga saham penting bagi investor dalam pengambilan keputusan karena pasar saham yang dinamis. Penelitian ini memprediksi harga penutupan beberapa saham menggunakan Random Forest dan Artificial Neural Network (ANN) serta mengevaluasi kinerjanya dengan menggunakan mean absolute percentage error (MAPE). Data yang digunakan adalah data historis mingguan dari tiga saham di sektor berbeda pada periode 2022–2023. Model dilatih dengan peubah harga saham serta fitur tambahan, seperti moving average dan simpangan baku harga penutupan. Hasil penelitian menunjukkan bahwa performa kedua model bervariasi bergantung pada saham dan periode prediksi. Secara umum, Random Forest menunjukkan performa yang lebih konsisten pada berbagai kondisi pasar, sementara ANN menghasilkan prediksi yang lebih akurat pada saham dengan pola pergerakan harga yang relatif stabil. Studi ini memberikan wawasan bagi investor dalam memilih model prediksi yang sesuai berdasarkan karakteristik data sehingga membantu pengambilan keputusan investasi yang lebih baik.
Stock price prediction is crucial for investors in making informed decisions due to the dynamic nature of the stock market. This study predicts the closing prices of selected stocks using Random Forest and Artificial Neural Network (ANN) models, and evaluates their performance using the mean absolute percentage error (MAPE). The data used consists of weekly historical prices from three stocks in different sectors during the period of 2022–2023. The models were trained using stock price variables along with additional features such as moving averages and standard deviations of closing prices. The results show that the performance of the two models varies depending on the stock and prediction period. In general, Random Forest demonstrates more consistent performance across different market conditions, while ANN provides more accurate predictions for stocks with relatively stable price movements. This study offers insights for investors in selecting the appropriate prediction model based on data characteristics, thus supporting better investment decision-making.
URI: http://repository.ipb.ac.id/handle/123456789/164370
Appears in Collections:UT - Actuaria

Files in This Item:
File Description SizeFormat 
cover_G5402201081_ad6be5eff80548c9badc243e44031a3b.pdfCover2.26 MBAdobe PDFView/Open
fulltext_G5402201081_a9c83b258dd443b99b3a35684d0813dc.pdf
  Restricted Access
Fulltext4.46 MBAdobe PDFView/Open
lampiran_G5402201081_ca1c41120dfd44d98bed38adf710c42e.pdf
  Restricted Access
Lampiran4.6 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.