Please use this identifier to cite or link to this item: http://repository.ipb.ac.id/handle/123456789/164322
Title: Analisis Data Monitoring Tegangan, Arus, dan Energi Menggunakan Sensor PZEM004T Berbasis Telegram dan Google Sheets di PT PLN Icon Plus
Other Titles: Data Analysis of Voltage, Current, and Energy Monitoring Using PZEM004T Sensor Based on Telegram and Google Sheets at PT PLN Icon Plus
Authors: Irmansyah
FAJARUDIN, MUHAMMAD
Issue Date: 2025
Publisher: IPB University
Abstract: Pemantauan parameter kelistrikan seperti tegangan, arus, dan energi secara real- time menjadi aspek penting dalam upaya efisiensi energi, khususnya di lingkungan kerja seperti PT PLN Icon Plus. Penelitian ini bertujuan untuk mengembangkan sistem monitoring kelistrikan berbasis Internet of Things (IoT) dengan memanfaatkan sensor PZEM004T yang terintegrasi dengan Google Sheets sebagai media pencatatan otomatis serta Telegram untuk notifikasi real - time. Sistem ini dirancang guna meningkatkan efektivitas pemantauan dan pencatatan data kelistrikan secara digital. Metode analisis data yang digunakan meliputi normalisasi menggunakan Z-Score, pengelompokan data dengan algoritma K Means Clustering, serta evaluasi jumlah klaster optimal melalui metode Elbow. Hasil penelitian menunjukkan bahwa sistem mampu merekam dan mengelompokkan data kelistrikan secara efektif serta menampilkan informasi konsumsi energi dalam bentuk yang mudah dipantau. Temuan ini diharapkan dapat menjadi solusi dalam meningkatkan efisiensi operasional dan pengelolaan energi secara berkelanjutan.
Real - time monitoring of electrical parameters such as voltage, current, and energy is essential for improving energy efficiency, particularly in workplace environments like PT PLN Icon Plus. This study aims to develop an Internet of Things (IoT)-based electrical monitoring system using the PZEM004T sensor, integrated with Google Sheets for automatic data logging and Telegram for real - time notifications. The system is designed to enhance the effectiveness of digital monitoring and recording of electrical data. The data analysis methods used include Z-Score normalization, data clustering using the K-Means Clustering algorithm, and optimal cluster evaluation through the Elbow method. The results show that the system is capable of recording and grouping electrical data effectively, presenting energy consumption information in an easily monitored format. These findings are expected to support operational efficiency and sustainable energy management.
URI: http://repository.ipb.ac.id/handle/123456789/164322
Appears in Collections:UT - Computer Engineering Tehcnology

Files in This Item:
File Description SizeFormat 
cover_J0304211099_0200b9166da04c57b18f2050b008dd71.pdfCover1.52 MBAdobe PDFView/Open
fulltext_J0304211099_9d6575e227994f05a03c1235b32e3df8.pdf
  Restricted Access
Fulltext5.39 MBAdobe PDFView/Open
lampiran_J0304211099_94974f9c514448f49d09e600b44e0dac.pdf
  Restricted Access
Lampiran4.55 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.