Please use this identifier to cite or link to this item: http://repository.ipb.ac.id/handle/123456789/164041
Title: Pengembangan Alat dan Analisis LSTM Kekuatan Sinyal RSSI Pada Smart Meter Gas Berbasis Narrowband IoT
Other Titles: Development Smart Meter Gas and LSTM Analysis of Signal Strength RSSI Based on Narrowband IoT
Authors: Mindara, Gema Parasti
Ghani, Muhammad Rafi Ari
Issue Date: 2025
Publisher: IPB University
Abstract: Pencatatan gas manual sering kali menyebabkan kesalahan dan inefisiensi. Penelitian ini bertujuan mengembangkan Sistem Smart meter gas berbasis Narrowband IoT (NB-IoT) untuk pemantauan konsumsi gas otomatis dan real-time. Penelitian ini juga menganalisis kekuatan sinyal RSSI dengan algoritma Long Short-Term Memory (LSTM). Metode meliputi perancangan perangkat keras menggunakan modul NB-IoT SIM7000C, sensor Hall effect, dan mikrokontroler Arduino Pro Mini, serta perangkat lunak berbasis Laravel untuk antarmuka website dan analisis LSTM. Pengujian dilakukan pada berbagai jarak dan kondisi lingkungan untuk mengevaluasi transmisi data dan stabilitas sinyal. Hasilnya, sistem mengirimkan data RSSI real-time (-83,67 hingga -56 dBm) sesuai standar NB-IoT. Antarmuka website menampilkan kekuatan sinyal, waktu pengiriman, dan statistik RSSI. Prediksi RSSI dengan LSTM mencapai akurasi 88,07% (MAE 3,30 dBm), mendukung stabilitas di wilayah dengan jaringan terbatas. Sistem ini stabil dan berpotensi untuk aplikasi perkotaan dan pedesaan.
Manual gas recording often leads to errors and inefficiencies. This research aims to develop a Smart meter gas system based on Narrowband Internet of Things (NB-IoT) for automated and real-time gas consumption monitoring. This research also analyzing Received Signal Strength Indicator (RSSI) using the Long Short Term Memory (LSTM) algorithm. The methodology includes designing hardware with the SIM7000C NB-IoT module, Hall-effect sensor, and Arduino Pro Mini microcontroller, alongside developing Laravel-based software for the website interface and LSTM analysis. Testing was conducted across various distances and environmental conditions to evaluate data transmission and signal stability. The system successfully transmits RSSI data in real-time (-83.67 to -56 dBm), compliant with NB-IoT standards. The website interface displays signal strength, transmission time, and RSSI statistics. LSTM-based RSSI prediction achieves 88.07% accuracy (MAE 3.30 dBm), supporting system stability in areas with limited network coverage. The system is stable and has potential for urban and rural applications.
URI: http://repository.ipb.ac.id/handle/123456789/164041
Appears in Collections:UT - Computer Engineering Tehcnology

Files in This Item:
File Description SizeFormat 
cover_J0304211010_136a3a8bd7f8497ba0d7ad1616830453.pdfCover8.92 MBAdobe PDFView/Open
fulltext_J0304211010_9d57d851eccf4b8b8dce8fe17b4bd625.pdf
  Restricted Access
Fulltext8.94 MBAdobe PDFView/Open
lampiran_J0304211010_d4629d4dc35b426f8f8600e11118b5ea.pdf
  Restricted Access
Lampiran2.63 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.