Please use this identifier to cite or link to this item:
http://repository.ipb.ac.id/handle/123456789/163996| Title: | Robot Cerdas ROV (Remotely Operated Vehicle) Berbasis Kendali Jarak Jauh Untuk Pengamatan Kehidupan Ikan Berbantukan Kamera 180? |
| Other Titles: | Remote Control-Based ROV Intelligent Robot For Fish Life Observation Assisted 180? Camera |
| Authors: | Siskandar, Ridwan Nisa, Afifah Rodhiyatun |
| Issue Date: | 2025 |
| Publisher: | IPB University |
| Abstract: | Pengembangan robot cerdas ROV (Remotely Operated Vehicle) mampu mendeteksi kehidupan ikan berdasarkan kondisi lingkungan air dengan menggunakan kamera 180? yang dilengkapi dengan nirkabel kendali jarak jauh. Robot ini dirancang untuk parairan air tawar, yang dikendalikan dengan remote control. Prediksi akurasi data sensor kualitas air menggunakan metode logika fuzzy ANFIS. Dimensi robot adalah lebar 40 cm, panjang 46 cm, dan diameter acrylic tabung sebesar 10 cm dengan tinggi 40 cm, dengan berat 4 kg. Robot dapat bergerak sejauh 25 cm, dengan kedalaman air hingga 30-40 cm. Pengamatan ikan akan ditampilkan pada website monitoring. Pengujian sensor polutan air dilakukan pada pagi, siang, dan malam di 5 kolam yang berbeda kemudian dilakukan evaluasi kinerja model dengan menggunakan Random Forest. Kemudian pada pengamatan kehidupan ikan menggunakan model YOLOv8l dengan akurasi mAP50(B) sebesar 0,859; mAP50-95(B) sebesar 0,68; precision(B) sebesar 0.904, dan recall sebesar 0,779 yang menunjukkan deteksi ikan hampir sempurna. The development of an intelligent ROV (Remotely Operated Vehicle) robot is able to detect fish life in real-time based on water environmental conditions using a 180? camera equipped with a wireless remote control. This robot is designed for freshwater, which is controlled by remote control. Prediction of water quality sensor data accuracy using the ANFIS fuzzy logic method. The dimensions of the robot are 40 cm wide, 46 cm long, and an acrylic tube diameter of 10 cm with a height of 40 cm, weighing 4 kg. The robot can move as far as 25 cm, with a water depth of up to 30-40 cm. Fish observations will be displayed on the monitoring website. Water pollutant sensor testing was carried out in the morning, afternoon, and evening in 5 different ponds, then an evaluation of model performance was carried out using Random Forest. Then in the observation of fish life using the YOLOv8l model with an accuracy of mAP50 (B) of 0.859, mAP50-95 (B) of 0.68, precision (B) of 0.904, and recall of 0.779 which indicates almost perfect fish detection. |
| URI: | http://repository.ipb.ac.id/handle/123456789/163996 |
| Appears in Collections: | UT - Computer Engineering Tehcnology |
Files in This Item:
| File | Description | Size | Format | |
|---|---|---|---|---|
| cover_J0304211119_e95747e0a6914eaeb72d3ca3ced98efc.pdf | Cover | 1.09 MB | Adobe PDF | View/Open |
| fulltext_J0304211119_13f6da27f98e435cbce4348d80baafda.pdf Restricted Access | Fulltext | 5.3 MB | Adobe PDF | View/Open |
| lampiran_J0304211119_124fd48c3a7b4e42a1b6d41b9cc670e8.pdf Restricted Access | Lampiran | 1.89 MB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.