Please use this identifier to cite or link to this item: http://repository.ipb.ac.id/handle/123456789/163518
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorAriyanto, Dodik-
dc.contributor.authorJasmin, Putri-
dc.date.accessioned2025-07-02T02:03:07Z-
dc.date.available2025-07-02T02:03:07Z-
dc.date.issued2025-
dc.identifier.urihttp://repository.ipb.ac.id/handle/123456789/163518-
dc.description.abstractKetersediaan air bersih yang terbatas mendorong pengembangan teknologi pengolahan air baku agar memenuhi baku mutu, khususnya dalam menurunkan kadar Total Dissolved Solids (TDS). Penelitian ini bertujuan mengembangkan sistem pengolahan air baku menggunakan metode elektrokoagulasi otomatis berbasis Internet of Things (IoT). Sistem dirancang dengan mikrokontroler ESP32 sebagai pengaliran otomatis tegangan berdasarkan nilai TDS yang dibaca oleh sensor. Nilai TDS dan tegangan disaring menggunakan Kalman Filter untuk meningkatkan akurasi pembacaan dan nilainya dapat dipantau secara real-time melalui LCD dan aplikasi Blynk. Hasil pengujian menunjukkan bahwa sistem mampu membaca dan mengendalikan proses elektrokoagulasi secara otomatis, dengan penerapan Kalman Filter yang menurunkan variansi pembacaan sensor dan meningkatkan akurasi dengan tingkat error 0,13% pada sensor TDS dan 0,55% pada sensor tegangan. Temuan baru dari penelitian ini adalah integrasi Kalman Filter dalam sistem elektrokoagulasi otomatis untuk meningkatkan kestabilan data sensor secara signifikan.-
dc.description.abstractThe limited availability of clean water drives the development of raw water treatment technologies to meet quality standards, particularly in reducing Total Dissolved Solids (TDS) levels. This study aims to develop a raw water treatment system using an automatic electrocoagulation method based on the Internet of Things (IoT). The system is designed with an ESP32 microcontroller to automatically control voltage based on TDS values read by a sensor. TDS and voltage readings are filtered using a Kalman Filter to improve accuracy and are monitored in real-time through an LCD and the Blynk application. Test results show that the system can automatically read and control the electrocoagulation process, with the Kalman Filter reducing sensor reading variance and improving accuracy, achieving an error rate of 0.13% for the TDS sensor and 0.55% for the voltage sensor. The novelty of this study lies in the integration of the Kalman Filter in an automatic electrocoagulation system to significantly enhance sensor data stability.-
dc.description.sponsorshipnull-
dc.language.isoid-
dc.publisherIPB Universityid
dc.titlePengembangan Sistem Pengolahan Air Baku Melalui Teknologi Elektrokoagulasi Otomatis Berbasis Internet of Thingsid
dc.title.alternativeDevelopment of a Raw Water Treatment System with Automatic Electrocoagulation Technology Based on the Internet of Things-
dc.typeTugas Akhir-
dc.subject.keywordElectrocoagulationid
dc.subject.keywordIoTid
dc.subject.keywordKalman Filterid
dc.subject.keywordRaw Waterid
dc.subject.keywordTDSid
Appears in Collections:UT - Computer Engineering Tehcnology

Files in This Item:
File Description SizeFormat 
cover_J0304211013_7082a97479d84a97878e385317fcd694.pdfCover1.18 MBAdobe PDFView/Open
fulltext_J0304211013_56a7555545174723aad331c8137291ac.pdf
  Restricted Access
Fulltext5.05 MBAdobe PDFView/Open
lampiran_J0304211013_f173db5af19447eab8cc2b8e957a04fd.pdf
  Restricted Access
Lampiran1.43 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.