Please use this identifier to cite or link to this item:
http://repository.ipb.ac.id/handle/123456789/163209| Title: | Sistem Monitoring Ternak Otomatis dengan Penimbangan Berat dan Identifikasi Domba dalam Pertanian Modern |
| Other Titles: | Automatic Livestock Monitoring System with Weight Measurement and Sheep Identification in Modern Farming |
| Authors: | Novianty, Inna Tambunan, Muhammad Rafid Habibi |
| Issue Date: | 2025 |
| Publisher: | IPB University |
| Abstract: | Penelitian ini mengembangkan sistem monitoring otomatis untuk domba berbasis Internet of Things (IoT). Sistem terdiri dari sensor loadcell untuk mengukur berat badan, dengan modul HX711 sebagai converter sinyal analog ke digital. Modul RFID MFRC522 digunakan untuk membaca identitas unik domba berupa Unique Identifier (UID) dari tag yang dipasang pada setiap domba. Mikrokontroler ESP32 memproses data dan mengirimkannya secara real-time ke platform web berbasis Flutter dengan penyimpanan menggunakan MySQL. Data berupa usia dan berat badan dianalisis menggunakan algoritma K-Means Clustering untuk mengelompokkan domba berdasarkan kemiripan atribut. Jumlah cluster ditentukan menggunakan Elbow Method dan Davies–Bouldin Index (DBI). Hasil evaluasi menunjukkan DBI sebesar 0,304 dan Elbow Point pada ?? = 3, yang mengindikasikan kualitas pengelompokan yang baik. Pengujian menunjukkan nilai Mean Absolute Error (MAE) yang rendah pada pembacaan berat badan, serta waktu respons RFID yang cepat dan stabil. Selain itu, sistem diuji untuk memastikan integrasi antara perangkat keras dan perangkat lunak berjalan dengan andal. Sistem ini berfungsi sebagai dasar pemantauan otomatis kondisi ternak dan mendukung pencatatan data yang terstruktur, serta dapat digunakan untuk pengembangan sistem klasifikasi kesehatan ternak secara berkelanjutan. This research developed an automatic monitoring system for sheep based on the Internet of Things (IoT). The system consists of a load cell sensor to measure body weight, with the HX711 module serving as an analog-to-digital signal converter. The MFRC522 RFID module is used to read the UID from tags attached to each sheep. An ESP32 microcontroller processes the data and transmits it in realtime to a web-based platform built with Flutter and supported by MySQL for data storage. The collected data, which includes age and body weight, is analyzed using the K-Means Clustering algorithm to group the sheep based on attribute similarity. The number of clusters is determined using the Elbow Method and Davies–Bouldin Index (DBI). The evaluation resulted in a DBI value of 0.304 and an Elbow Point at ?? = 3, indicating a good clustering structure. Testing shows a low Mean Absolute Error (MAE) in weight readings and fast, stable RFID response time. The system was also tested to ensure reliable integration between hardware and software components. This system provides a foundation for automated livestock condition monitoring and supports structured data logging, with potential for future development of health classification systems for farm. |
| URI: | http://repository.ipb.ac.id/handle/123456789/163209 |
| Appears in Collections: | UT - Computer Engineering Tehcnology |
Files in This Item:
| File | Description | Size | Format | |
|---|---|---|---|---|
| cover_J0304211117_7098fa6a947749ef84308f21a31467d5.pdf | Cover | 1.45 MB | Adobe PDF | View/Open |
| fulltext_J0304211117_cbe949abb31f428fbbec399ebca38460.pdf Restricted Access | Fulltext | 6.04 MB | Adobe PDF | View/Open |
| lampiran_J0304211117_af9546276a634ad7a45a07dfd81b5d27.pdf Restricted Access | Lampiran | 500.18 kB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.