Please use this identifier to cite or link to this item: http://repository.ipb.ac.id/handle/123456789/162467
Title: Pengembangan Back-End E-Commerce Analytic Tool untuk Deteksi Penjualan Pangan Olahan Ilegal
Other Titles: Back-End Development of E-Commerce Analytic Tool for Illegal Processed Food Sales Detection
Authors: Ramadhan, Dean Apriana
Fauzan, Fadil Muhammad
Issue Date: 2025
Publisher: IPB University
Abstract: Pangan olahan memainkan peran krusial dalam kehidupan sehari-hari masyarakat modern, menyediakan alternatif konsumsi yang beragam. Regulasi yang ketat diperlukan untuk memastikan kualitas produk pangan dan obat. Direktorat Cegah Tangkal dari Badan Pengawas Obat dan Makanan (BPOM) memainkan peran penting dalam mengawasi peredaran obat dan makanan di masyarakat, khususnya dalam menghadapi tantangan peredaran pangan olahan ilegal melalui e-commerce. Dengan kemajuan teknologi, model machine learning dapat digunakan untuk mendeteksi peredaran pangan tanpa izin di internet. Penelitian ini mengembangkan modul back-end untuk mengintegrasikan model machine learning dengan modul front-end menggunakan REST API. Metode prototyping dipilih untuk memfasilitasi adaptasi terhadap perubahan kebutuhan pengguna. Pada penelitian ini modul back-end berhasil mengintegrasikan model machine learning dengan aplikasi E-Commerce Analytic Tool, memungkinkan front-end untuk mengambil hasil analisis secara efisien dengan meminimalkan jumlah request ke server melalui komunikasi yang teroptimasi. Pengembangan ini mendukung upaya Direktorat Cegah Tangkal BPOM dalam meningkatkan pemantauan dan pengendalian pangan olahan ilegal melalui platform digital.
Processed foods play a crucial role in modern society, offering diverse consumption alternatives. Strict regulations are essential to ensure the quality of food and drugs. The Directorate of Prevention at the Indonesian Food and Drug Authority (BPOM) plays a vital role in overseeing the distribution of drugs and food in the community, particularly in addressing the challenges posed by the circulation of illegal processed food through e-commerce. With technological advancements, machine learning models can now detect Unauthorized food distribution on the internet. This research develops a back-end module to integrate machine learning models with the front-end using REST API. Prototyping was chosen to facilitate adaptation to changing user needs. The back-end API successfully integrates a machine learning model with the E-Commerce Analytic Tool application's back-end, enabling efficient analysis retrieval by the front-end through server-side communication. This development supports BPOM's efforts to enhance monitoring and control of illegal processed food through digital platforms.
URI: http://repository.ipb.ac.id/handle/123456789/162467
Appears in Collections:UT - Computer Science

Files in This Item:
File Description SizeFormat 
cover_G6401201083_20fd68fe263f449da645e5f2aeed3541.pdfCover297.23 kBAdobe PDFView/Open
fulltext_G6401201083_7c730f767bae4f4cb24e810efe83261d.pdf
  Restricted Access
Fulltext1.1 MBAdobe PDFView/Open
lampiran_G6401201083_c25692c54c7b44d2a5d67539dc95f4fa.pdf
  Restricted Access
Lampiran243.29 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.