Please use this identifier to cite or link to this item:
http://repository.ipb.ac.id/handle/123456789/162467| Title: | Pengembangan Back-End E-Commerce Analytic Tool untuk Deteksi Penjualan Pangan Olahan Ilegal |
| Other Titles: | Back-End Development of E-Commerce Analytic Tool for Illegal Processed Food Sales Detection |
| Authors: | Ramadhan, Dean Apriana Fauzan, Fadil Muhammad |
| Issue Date: | 2025 |
| Publisher: | IPB University |
| Abstract: | Pangan olahan memainkan peran krusial dalam kehidupan sehari-hari
masyarakat modern, menyediakan alternatif konsumsi yang beragam. Regulasi
yang ketat diperlukan untuk memastikan kualitas produk pangan dan obat.
Direktorat Cegah Tangkal dari Badan Pengawas Obat dan Makanan (BPOM)
memainkan peran penting dalam mengawasi peredaran obat dan makanan di
masyarakat, khususnya dalam menghadapi tantangan peredaran pangan olahan
ilegal melalui e-commerce. Dengan kemajuan teknologi, model machine learning
dapat digunakan untuk mendeteksi peredaran pangan tanpa izin di internet.
Penelitian ini mengembangkan modul back-end untuk mengintegrasikan model
machine learning dengan modul front-end menggunakan REST API. Metode
prototyping dipilih untuk memfasilitasi adaptasi terhadap perubahan kebutuhan
pengguna. Pada penelitian ini modul back-end berhasil mengintegrasikan model
machine learning dengan aplikasi E-Commerce Analytic Tool, memungkinkan
front-end untuk mengambil hasil analisis secara efisien dengan meminimalkan
jumlah request ke server melalui komunikasi yang teroptimasi. Pengembangan ini
mendukung upaya Direktorat Cegah Tangkal BPOM dalam meningkatkan
pemantauan dan pengendalian pangan olahan ilegal melalui platform digital. Processed foods play a crucial role in modern society, offering diverse consumption alternatives. Strict regulations are essential to ensure the quality of food and drugs. The Directorate of Prevention at the Indonesian Food and Drug Authority (BPOM) plays a vital role in overseeing the distribution of drugs and food in the community, particularly in addressing the challenges posed by the circulation of illegal processed food through e-commerce. With technological advancements, machine learning models can now detect Unauthorized food distribution on the internet. This research develops a back-end module to integrate machine learning models with the front-end using REST API. Prototyping was chosen to facilitate adaptation to changing user needs. The back-end API successfully integrates a machine learning model with the E-Commerce Analytic Tool application's back-end, enabling efficient analysis retrieval by the front-end through server-side communication. This development supports BPOM's efforts to enhance monitoring and control of illegal processed food through digital platforms. |
| URI: | http://repository.ipb.ac.id/handle/123456789/162467 |
| Appears in Collections: | UT - Computer Science |
Files in This Item:
| File | Description | Size | Format | |
|---|---|---|---|---|
| cover_G6401201083_20fd68fe263f449da645e5f2aeed3541.pdf | Cover | 297.23 kB | Adobe PDF | View/Open |
| fulltext_G6401201083_7c730f767bae4f4cb24e810efe83261d.pdf Restricted Access | Fulltext | 1.1 MB | Adobe PDF | View/Open |
| lampiran_G6401201083_c25692c54c7b44d2a5d67539dc95f4fa.pdf Restricted Access | Lampiran | 243.29 kB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.