Please use this identifier to cite or link to this item:
http://repository.ipb.ac.id/handle/123456789/162431| Title: | Pemetaan Wilayah Terdampak Banjir Rob di Kecamatan Belawan, Medan Menggunakan Citra Sentinel-1A dan Sentinel-2A |
| Other Titles: | Mapping of Tidal Flood-Affected Areas in Belawan District, Medan Using Sentinel-1A and Sentinel-2A Imagery |
| Authors: | Siregar, Vincentius P. Panjaitan, James Parlindungan Fuaddri, Fuad |
| Issue Date: | 2025 |
| Publisher: | IPB University |
| Abstract: | Banjir rob merupakan fenomena yang semakin sering terjadi di wilayah pesisir akibat kombinasi kenaikan muka air laut dan penurunan muka tanah. Kecamatan Belawan, Medan, merupakan salah satu wilayah yang rentan terhadap banjir rob, sehingga pemetaan wilayah terdampak sangat diperlukan untuk mitigasi yang lebih efektif. Metode penelitian meliputi akuisisi dan analisis citra satelit dengan berbagai teknik pengolahan data. Untuk mendapatkan daerah tergenang, citra Sentinel-2A dianalisis menggunakan metode Green Shortwave Infrared (GSWIR), sementara citra Sentinel-1A dianalisis menggunakan metode decision tree classification untuk menetapkan threshold dengan memanfaatkan teknologi radar. Hasil penelitian menunjukkan bahwa metode radar menggunakan citra Sentinel-1A lebih akurat dalam mendeteksi genangan banjir dibandingkan metode infrared menggunakan citra Sentinel-2A. Hal ini disebabkan oleh keunggulan teknologi radar yang mampu menembus awan dan tidak terpengaruh oleh kondisi atmosfer. Analisis menunjukkan bahwa Kecamatan Belawan mengalami penurunan muka tanah berkisar antara 0–6,8 cm/th, sedangkan tren kenaikan muka air laut mencapai 4,56 mm/th, sehingga memperparah dampak banjir rob. Penelitian ini memberikan kontribusi penting dalam upaya mitigasi banjir rob dengan menyediakan peta wilayah terdampak yang lebih akurat. Hasil penelitian ini diharapkan dapat menjadi acuan bagi pemerintah dan pemangku kepentingan dalam perencanaan tata ruang dan pengelolaan wilayah pesisir yang lebih adaptif terhadap perubahan lingkungan.
Kata Kunci: belawan, genangan, infrared, radar, SLR. Tidal flooding had become an increasingly frequent phenomenon in coastal areas due to a combination of rising sea levels and land subsidence. Belawan District in Medan was one of the regions highly vulnerable to tidal flooding, making the mapping of affected areas essential for more effective mitigation efforts. This study utilized satellite imagery to identify inundated areas. Sentinel-2A imagery was analyzed using the Green Shortwave Infrared (GSWIR) method, while Sentinel-1A radar imagery was processed using a decision tree classification method to determine flood thresholds. The analysis showed that the radar-based method using Sentinel-1A was more accurate in detecting flood inundation compared to the infrared-based method using Sentinel-2A. The advantage of radar imagery lay in its ability to penetrate clouds and its resistance to atmospheric interference, providing more consistent results. In addition, land subsidence analysis revealed that Belawan District experienced a land surface decline ranging from 0 to 6,8 cm/yr, while sea level rise showed a trend of 4,56 mm/yr. The combination of these factors worsened the impact and frequency of tidal flooding in the area. This study made a significant contribution to tidal flood mitigation efforts by providing more accurate maps of affected areas. The results were expected to serve as a reference for the government and stakeholders in spatial planning and coastal area management that was more adaptive to environmental changes. Keywords: belawan, flood, infrared, radar, SLR |
| URI: | http://repository.ipb.ac.id/handle/123456789/162431 |
| Appears in Collections: | UT - Marine Science And Technology |
Files in This Item:
| File | Description | Size | Format | |
|---|---|---|---|---|
| cover_C5401211005_f64f7493fea845fca215d9ca061fb88e.pdf | Cover | 861.99 kB | Adobe PDF | View/Open |
| fulltext_C5401211005_3959e61e0a3c48ca93fb2d53e9e458c4.pdf Restricted Access | Fulltext | 4.8 MB | Adobe PDF | View/Open |
| lampiran_C5401211005_30dd6c9bfb8c43cfa6be73e667167676.pdf Restricted Access | Lampiran | 2.72 MB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.