Please use this identifier to cite or link to this item:
http://repository.ipb.ac.id/handle/123456789/161858| Title: | Perbandingan Performa Metode MLE dan Bayesian pada Regresi Logistik Ordinal Multilevel dalam Analisis Tingkat Kesejahteraan Rumah Tangga |
| Other Titles: | Performance Comparison of MLE and Bayesian Methods on Multilevel Ordinal Logistic Regression in the Analysis of Household Welfare Level |
| Authors: | Susetyo, Budi Sadik, Kusman Hermawati, Neni |
| Issue Date: | 2025 |
| Publisher: | IPB University |
| Abstract: | Data hierarki adalah data yang terorganisir secara berjenjang dengan unit pengamatan terkumpul dalam kelompok-kelompok saling terkait. Metode statistik klasik kurang mampu menjelaskan variasi antar kelompok sehingga dikembangkan metode analisis multilevel. Salah satunya yaitu analisis regresi logistik multilevel untuk data dengan respons kategorik. Selain pemilihan metode analisis, metode pendugaan parameter juga berpengaruh terhadap kebaikan model. Maximum Likelihood Estimation (MLE) adalah metode yang umum digunakan, sementara Bayesian merupakan metode yang banyak dikembangkan saat ini.
Kemiskinan ekstrem adalah ketidakmampuan dalam memenuhi kebutuhan dasar seperti makanan, air bersih, sanitasi, kesehatan, tempat tinggal, pendidikan, dan akses informasi. Pada 2021, sebanyak 5,8 juta jiwa (2,14%) di Indonesia tergolong miskin ekstrem. Untuk mengatasi masalah ini, pemerintah menetapkan data Pensasaran Percepatan Penghapusan Kemiskinan Ekstrem (P3KE). Salah satu implementasi kebijakannya, data P3KE harus digunakan dalam menentukan Keluarga Penerima Manfaat Bantuan Langsung Tunai Dana Desa (KPM BLT DD). Akan tetapi, desa-desa sudah terbiasa menentukan KPM BLT DD berdasarkan musyawarah ditingkat kedusunan (Musdus). Akibatnya, sering terjadi ketidaksesuaian antara hasil Musdus dengan data P3KE karena perbedaan indikator dalam menilai tingkat kesejahteraan rumah tangga.
Oleh karena itu, diperlukan analisis komponen yang berpengaruh signifikan terhadap tingkat kesejahteraan rumah tangga di Desa Wanasari berdasarkan data P3KE. Data tersebut diduga berstruktur hierarki dengan peubah respons ordinal, sehingga digunakan analisis regresi logistik ordinal multilevel dengan level pertama rumah tangga dan level kedua kedusunan. Metode tersebut kemudian dibandingkan dengan analisis regresi logistik ordinal satu level. Untuk memperoleh model terbaik dilakukan komparasi antara penduga parameter MLE dan Bayesian dalam menduga koefisien ß.
Dari hasil penelitian diperoleh kesimpulan bahwa data P3KE Desa Wanasari merupakan data hierarki karena analisis regresi logistik multilevel lebih baik daripada satu level. Penelitian ini juga menyimpulkan bahwa pendugaan parameter dengan Bayesian lebih baik daripada MLE dalam analisis satu level maupun multilevel. Sehingga model terbaik diperoleh dengan menggunakan analisis regresi logistik ordinal multilevel dengan penduga parameter Bayesian. Prior yang digunakan yaitu Cauchy(0, 2,5), menghasilkan akurasi sebesar 61.76%. Peubah prediktor yang berpengaruh signifikan terhadap tingkat kesejahteraan rumah tangga meliputi padanan dukcapil(X1), memiliki tabungan(X7), Jenis dinding(X9), bahan bakar memasak(X12), sumber air minum(X13), risiko stunting(X15) dan jumlah KK kedusunan(Z1). Hierarchical data is data that is organized in a hierarchical manner with observation units collected in interrelated groups. Classical statistical methods are less able to explain the variation between groups so that multilevel analysis methods are developed. One of them is multilevel logistic regression analysis for data with categorical responses. In addition to the choice of analysis method, the parameter estimation method also affects the goodness of the model. Maximum Likelihood Estimation (MLE) is a commonly used method, while Bayesian is a widely developed method today. Extreme poverty is the inability to fulfill basic needs such as food, clean water, sanitation, health, shelter, education, and access to information. In 2021, 5.8 million people (2.14%) in Indonesia were classified as extreme poor. To overcome this problem, the government established the Targeting for the Acceleration of the Elimination of Extreme Poverty (P3KE) data. One of the policy implementations is that P3KE data must be used in determining the beneficiary families of Village Fund Direct Cash Assistance (KPM BLT DD). However, villages are accustomed to determining KPM BLT DD based on deliberations at the sub-village level (Musdus). As a result, there are often discrepancies between Musdus results and P3KE data due to differences in indicators in assessing household welfare levels. Therefore, it is necessary to analyze the components that have a significant effect on the welfare level of households in Desa Wanasari based on P3KE data. The data is assumed to be hierarchically structured with ordinal response variables, so multilevel ordinal logistic regression analysis is used with the first level of households and the second level of sub-village. The method was then compared with one-level ordinal logistic regression analysis. To obtain the best model, a comparison was made between the MLE and Bayesian parameter estimators in estimating the ß coefficient. From the research results, it is concluded that the P3KE data of Wanasari Village is hierarchical data because multilevel logistic regression analysis is better than one level. This study also concluded that parameter estimation with Bayesian is better than MLE in one-level and multilevel analysis. So the best model is obtained using multilevel ordinal logistic regression analysis with Bayesian parameter estimator. The prior used is Cauchy(0, 2,5), resulting in an accuracy of 61.76%. The predictor variables that have a significant effect include civil registration certificate(X1), having savings(X7), house wall type(X9), cooking fuel(X12), drinking water source(X13), stunting risk(X15) and number of households in the sub-village(Z1). |
| URI: | http://repository.ipb.ac.id/handle/123456789/161858 |
| Appears in Collections: | MT - School of Data Science, Mathematic and Informatics |
Files in This Item:
| File | Description | Size | Format | |
|---|---|---|---|---|
| cover_G1501211028_2d9a1be7e42c4a2784f9318efe0604cc.pdf | Cover | 631.46 kB | Adobe PDF | View/Open |
| fulltext_G1501211028_07fa376dbec84adbbb66866351bceb2b.pdf Restricted Access | Fulltext | 1.19 MB | Adobe PDF | View/Open |
| lampiran_G1501211028_962fac08edc347adad2ee773d2367653.pdf Restricted Access | Lampiran | 553.07 kB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.