Please use this identifier to cite or link to this item: http://repository.ipb.ac.id/handle/123456789/161813
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorSiregar, Vincentius P.-
dc.contributor.advisorArhatin, Risti Endriani-
dc.contributor.authorFadillah, Siti Nur-
dc.date.accessioned2025-05-27T22:29:06Z-
dc.date.available2025-05-27T22:29:06Z-
dc.date.issued2025-
dc.identifier.urihttp://repository.ipb.ac.id/handle/123456789/161813-
dc.description.abstractEkosistem mangrove di Desa Ujung Alang, Kecamatan Kampung Laut, Kabupaten Cilacap, Jawa Tengah, Indonesia mengalami degradasi luasan seiring berjalannya waktu. Hal tersebut menyebabkan perlunya dilakukan pemantauan ekosistem mangrove untuk mencegah terjadinya kerusakan berkelanjutan. Penelitian bertujuan untuk mengetahui tingkat korelasi antara nilai NDVI dan nilai persentase tutupan kanopi mangrove, serta memetakan sebaran yang terjadi pada tahun 2023 di Desa Ujung Alang, Cilacap menggunakan citra satelit Sentinel-2A. Klasifikasi menggunakan algoritma maximum likelihood untuk mengkelaskan klasifikasi piksel dalam kelas tertentu dilanjutkan dengan Normalized Difference Vegetation Index (NDVI) untuk mengetahui kelas kerapatan dari ekosistem mangrove. Klasifikasi kerapatan mangrove terdiri dari 3 kelas yaitu jarang, sedang, dan rapat, dengan kelas kerapatan mangrove rapat yang mendominasi. Wilayah timur Desa Ujung Alang, Cilacap, mendominasi sebaran mangrove karena lokasinya dekat dengan masukan air laut. Luas kerapatan mangrove pada tahun 2023 diantaranya jarang (1,527 ha), sedang (3,197), dan rapat (2.571,962 ha). Nilai koefisien korelasi (r) yang diperoleh dari uji korelasi sebesar 0,877 dan nilai koefisien determinasi (R²) sebesar 0,769. Uji akurasi menggunakan metode confusion matrix membutuhkan hasil klasifikasi kerapatan mangrove antara nilai NDVI dan nilai tutupan kanopi. Hasil uji akurasi secara keseluruhan sebesar 94,737%.-
dc.description.abstractThe mangrove ecosystem in Ujung Alang Village, Kampung Laut Subdistrict, Cilacap Regency, Central Java, Indonesia has experienced area degradation over time. This necessitates monitoring of the mangrove ecosystem to prevent further damage. This research aims to determine the correlation level between NDVI values and the percentage of mangrove canopy cover, as well as mapping the distribution that occurred in 2023 in Ujung Alang Village, Cilacap using Sentinel- 2A satellite imagery. Classification using the maximum likelihood algorithm to classify pixels into specific classes, followed by the Normalized Difference Vegetation Index (NDVI) to determine the density class of the mangrove ecosystem. The mangrove density classification consists of 3 classes: sparse, moderate, and dense, with the dense mangrove density class being dominant. The eastern region of Ujung Alang Village, Cilacap, is an area that dominates the distribution of mangroves because it is included in the area close to seawater input. The area of mangrove density in 2023 included sparse (1,527 ha), moderate (3,197 ha), and dense (2.571,962 ha). The correlation coefficient (r) derived from the correlation analysis was 0,877 and the coefficient of determination (R²) was 0,769. The accuracy test using the confusion matrix method required the mangrove density classification results between NDVI values and canopy cover values. The overall accuracy test result was 94.737%.-
dc.description.sponsorshipnull-
dc.language.isoid-
dc.publisherIPB Universityid
dc.titlePemantauan Sebaran Mangrove di Desa Ujung Alang, Cilacap Menggunakan Citra Satelit Sentinel-2Aid
dc.title.alternativeMonitoring Distribution of Mangrove in Ujung Alang Village, Cilacap Using Sentinel-2A Satellite Imagery-
dc.typeSkripsi-
dc.subject.keywordKerapatan mangroveid
dc.subject.keywordMaximum Likelihoodid
dc.subject.keywordNDVI (Normalized Difference Vegetation Index)id
dc.subject.keywordsentinel-2Aid
dc.subject.keywordDesa Ujung Alangid
Appears in Collections:UT - Marine Science And Technology

Files in This Item:
File Description SizeFormat 
cover_C54190037_b071ba16f6144d3c87232bcb28dc8fe1.pdfCover405.84 kBAdobe PDFView/Open
fulltext_C54190037_aea0dc419b594a21b7f4ec6005e1e274.pdf
  Restricted Access
Fulltext2.54 MBAdobe PDFView/Open
lampiran_C54190037_ee26a66579bf414c923ad4ab205e4c66.pdf
  Restricted Access
Lampiran357.7 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.