Please use this identifier to cite or link to this item:
http://repository.ipb.ac.id/handle/123456789/161782| Title: | Front-end Sistem Pendukung Keputusan Pemilihan Makanan dan Minuman Restoran Spesifik Indonesia Menggunakan React.js |
| Other Titles: | Front-end Decision Support System for Selecting Food and Beverages in Specific Indonesian Restaurants Using React.js |
| Authors: | Priandana, Karlisa Seminar, Kudang Boro Fillah, Ismy Fana |
| Issue Date: | 2025 |
| Publisher: | IPB University |
| Abstract: | Pemenuhan kebutuhan gizi individu penting untuk mencegah Penyakit Tidak Menular. Salah satu tantangan yang dihadapi masyarakat adalah kesulitan memilih makanan yang sesuai dengan kebutuhan gizi, terutama saat makan di luar rumah. Penelitian ini bertujuan mengembangkan aplikasi front-end sistem pendukung keputusan berbasis web mobile yang merekomendasikan menu makanan khas Indonesia sesuai kebutuhan gizi spesifik individu. Metode pengembangan menggunakan iterative waterfall, mencakup analisis kebutuhan aplikasi, desain rancangan prototipe, implementasi konstruksi prototipe, dan pengujian antarmuka pengguna. Aplikasi dikembangkan menggunakan TypeScript dengan library React.js, serta diintegrasikan dengan layanan back-end yang menerapkan model Algoritma Genetika untuk menghasilkan rekomendasi berbasis data pengguna. Pengujian dilakukan dengan blackbox testing dan usability testing untuk mengevaluasi fungsionalitas dan pengalaman pengguna. Hasil menunjukkan bahwa aplikasi berfungsi sesuai harapan dan efektif membantu pengguna memilih makanan yang sesuai dengan kondisi kesehatannya. Fulfilling individual nutritional needs is crucial to prevent Non-Communicable Diseases. One of the challenges faced by the community is the difficulty in selecting foods that meet specific nutritional requirements, especially when dining out. This study aims to develop a mobile web-based decision support system front-end application that recommends typical Indonesian menus based on individual nutritional needs. The development method adopts an iterative waterfall model, consisting of application requirements analysis, prototype design, implementation of prototype construction, and user interface testing. The application was built using TypeScript with React.js library, and integrated with a back-end service that implements a Genetic Algorithm model to generate user-based recommendations. Testing was conducted using blackbox testing and usability testing to evaluate functionality and user experience. The results show that the application performs as expected and effectively assists users in selecting meals that align with their health conditions. |
| URI: | http://repository.ipb.ac.id/handle/123456789/161782 |
| Appears in Collections: | UT - Computer Science |
Files in This Item:
| File | Description | Size | Format | |
|---|---|---|---|---|
| cover_G6401211001_ba2a7a0e5e92409b865dbbf88d826b22.pdf | Cover | 469.14 kB | Adobe PDF | View/Open |
| fulltext_G6401211001_56e4f6eecca44645a8576a493894a434.pdf Restricted Access | Fulltext | 2.01 MB | Adobe PDF | View/Open |
| lampiran_G6401211001_ae09ed30f8304096aff9d308a8df4513.pdf Restricted Access | Lampiran | 2.64 MB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.