Please use this identifier to cite or link to this item: http://repository.ipb.ac.id/handle/123456789/161496
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorMarcelita, Faldiena-
dc.contributor.authorArdhaneswara, Timothy-
dc.date.accessioned2025-03-27T01:25:37Z-
dc.date.available2025-03-27T01:25:37Z-
dc.date.issued2025-
dc.identifier.urihttp://repository.ipb.ac.id/handle/123456789/161496-
dc.description.abstractData merupakan aset penting dalam pengambilan keputusan operasional, terutama dalam era digital saat ini. Kualitas data yang baik sangat penting untuk mendukung keputusan yang efektif. PT Asta Protek Jiarsi menghadapi tantangan dalam menjaga kualitas data, terutama terkait dengan kelengkapan data, sehingga dapat mengganggu proses pengolahan data. Untuk mengatasi masalah ini, diperlukan pendekatan komprehensif untuk mengidentifikasi seberapa banyak data yang memiliki nilai null dalam dataset. Penerapan Great Expectations sebagai kerangka kerja untuk otomatisasi validasi data dan integrasi hasil validasi ke dalam dashboard Tableau diusulkan untuk meningkatkan visibilitas dan responsivitas terhadap kualitas data. Tableau memungkinkan visualisasi data yang mudah dipahami, sementara Apache Airflow digunakan untuk otomatisasi harian. Metode CRISP-DM digunakan sebagai landasan metodologi penelitian ini. Dengan pendekatan ini, diharapkan dapat memberikan kontribusi positif dalam pengembangan praktik terbaik untuk menjaga kualitas data dan memberikan wawasan tambahan melalui dashboard dinamis.-
dc.description.abstractData is an important asset in operational decision making, especially in today's digital era. Good data quality is essential to support effective decisions. PT Asta Protek Jiarsi faces challenges in maintaining data quality, especially related to data completeness, which can disrupt the data processing process. To overcome this problem, a comprehensive approach is needed to identify how much data has null values in the dataset. The application of Great Expectations as a framework for data validation automation and the integration of validation results into the Tableau dashboard is proposed to improve visibility and responsiveness to data quality. Tableau allows for easy-to-understand data visualization, while Apache Airflow is used for daily automation. The CRISP-DM method is used as the foundation of this research methodology. With this approach, it is expected to provide a positive contribution to the development of best practices for maintaining data quality and providing additional insights through dynamic dashboards.-
dc.description.sponsorshipnull-
dc.language.isoid-
dc.publisherIPB Universityid
dc.titlePembuatan Sistem Manajemen Kualitas Data Menggunakan Great Expectations: Integrasi ke dalam Dashboardid
dc.title.alternativeDeveloping a Data Quality Management System Using Great Expectations and Integrating it into a Dashboard-
dc.typeTugas Akhir-
dc.subject.keywordkualitas dataid
dc.subject.keywordtableauid
dc.subject.keywordkelengkapan dataid
dc.subject.keywordpemeliharaan kualitas dataid
dc.subject.keywordGreat Expectationsid
dc.subject.keywordApache Airflowid
dc.subject.keywordCRISP-DMid
Appears in Collections:UT - Software Engineering Technology

Files in This Item:
File Description SizeFormat 
cover_J0303202173_a356c93ca84b475db8dde4d3161bf9bd.pdfCover2.28 MBAdobe PDFView/Open
fulltext_J0303202173_ff568a6ed17d4fae84f5fb6c0ded9167.pdf
  Restricted Access
Fulltext5.72 MBAdobe PDFView/Open
lampiran_J0303202173_50833368c119442a84a165e185af4eab.pdf
  Restricted Access
Lampiran3.75 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.