Please use this identifier to cite or link to this item: http://repository.ipb.ac.id/handle/123456789/160718
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorMushthofa-
dc.contributor.advisorAgmalaro, Muhammad Asyhar-
dc.contributor.authorIrmawan, Muhammad Daffa Fakhi-
dc.date.accessioned2025-01-15T06:37:45Z-
dc.date.available2025-01-15T06:37:45Z-
dc.date.issued2024-
dc.identifier.urihttp://repository.ipb.ac.id/handle/123456789/160718-
dc.description.abstractKonflik antara Israel dan Palestina telah memicu berbagai respons di seluruh dunia, termasuk di Indonesia. Majelis Ulama Indonesia (MUI) mengeluarkan fatwa yang mendukung perjuangan Palestina dan menganjurkan untuk memboikot produk terafiliasi Israel, yang memunculkan beragam tanggapan masyarakat. Analisis sentimen bertujuan untuk memberikan gambaran terhadap pola perbincangan masyarakat menggunakan IndoBERT, dan melakukan pemodelan topik menggunakan metode Latent Dirichlet Allocation. Penelitian ini mengklasifikasikan sentimen masyarakat ke dalam kategori positif, netral, dan negatif serta mengidentifikasi topik utama yang dibahas terkait fatwa tersebut. Tahapan penelitian meliputi pengumpulan data, praproses, pelabelan, pembagian data, pemodelan, evaluasi, dan pemodelan topik. Hasil penelitian menunjukkan bahwa model IndoBERT mampu mengklasifikasikan sentimen dengan akurasi 94%, sementara metode Latent Dirichlet Allocation berhasil mengidentifikasi topik utama dalam diskusi masyarakat untuk setiap kategori sentimen.-
dc.description.abstractThe ongoing conflict between Israel and Palestine has prompted diverse responses globally, including in Indonesia. The Indonesian Ulema Council (MUI) issued a fatwa supporting the Palestinian struggle and advocating for the boycott of products affiliated with Israel, which has elicited various reactions within the public. Sentiment analysis aims to provide an overview of public discourse patterns using IndoBERT and modelling the topic using the Latent Dirichlet Allocation method. This study classifies public sentiment into positive, neutral, and negative categories and identifies the primary topics discussed in relation to the fatwa. The research process includes data collection, preprocessing, labeling, data splitting, modeling, evaluation, and topic modeling. The results indicate that the IndoBERT model is capable of classifying sentiment with an accuracy rate of 94%, while the Latent Dirichlet Allocation method successfully identifies the main topics in public discourse for each sentiment category.-
dc.description.sponsorshipnull-
dc.language.isoid-
dc.publisherIPB Universityid
dc.titleAnalisis Sentimen Masyarakat terhadap Fatwa MUI dan Boikot Produk Terafiliasi Israel di X menggunakan IndoBERT dan Topic Modellingid
dc.title.alternativenull-
dc.typeSkripsi-
dc.subject.keywordanalisis sentimenid
dc.subject.keywordindobertid
dc.subject.keywordboikotid
dc.subject.keywordfatwaid
dc.subject.keywordlatent dirichlet allocationid
dc.subject.keywordmajelis ulama indonesiaid
Appears in Collections:UT - Computer Science

Files in This Item:
File Description SizeFormat 
cover_G6401201029_5e053a9fe1d14e22b0897f7a5bf34ed1.pdfCover2.71 MBAdobe PDFView/Open
fulltext_G6401201029_e56374fe01874eedaeb777740c1db5b8.pdf
  Restricted Access
Fulltext10.22 MBAdobe PDFView/Open
lampiran_G6401201029_3608c731c2f948129bfcb31fa45a2bab.pdf
  Restricted Access
Lampiran1.5 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.