Please use this identifier to cite or link to this item: http://repository.ipb.ac.id/handle/123456789/160665
Title: Perbandingan Kinerja Model ARIMA dan k-Nearest Neighbor dalam Peramalan Harga Beras Indonesia
Other Titles: Comparative Study of ARIMA and k-Nearest Neighbor Models in Forecasting Indonesian Rice Prices
Authors: Bukhari, Fahren
Mayyani, Hidayatul
TAZKIA, AVINA
Issue Date: 2025
Publisher: IPB University
Abstract: Harga beras di Indonesia merupakan indikator penting stabilitas ekonomi dan kesejahteraan masyarakat, sehingga fluktuasinya dapat menyebabkan ketidakpastian. Penelitian ini membandingkan kinerja model Autoregressive Integrated Moving Average (ARIMA) dan k-Nearest Neighbor (KNN) dalam meramalkan harga beras di Indonesia menggunakan data bulanan periode Januari 2010 hingga Maret 2024. Data dibagi menjadi 80% training dan 20% testing. Model ARIMA(1,1,0) dipilih sebagai model terbaik berdasarkan uji formal dan kriteria AIC, sementara kombinasi parameter KNN terbaik adalah k = 8, algoritma ‘auto’, metrik Manhattan, dan pembobotan ‘uniform’. Hasil menunjukkan ARIMA memiliki akurasi lebih baik dengan nilai MAPE dan RMSE lebih rendah, serta lebih efektif dalam menangkap tren jangka panjang meskipun kurang responsif terhadap fluktuasi mendadak. KNN lebih fleksibel dalam mengenali pola data, namun kurang stabil dalam menghadapi volatilitas tinggi. Oleh karena itu, ARIMA lebih cocok untuk data linear dan stabil, sedangkan KNN lebih sesuai untuk data yang lebih kompleks.
Indonesian rice prices are an essential indicator of economic stability and public welfare, so their fluctuations can cause uncertainty. This study compares the performance of the Autoregressive Integrated Moving Average (ARIMA) and k-Nearest Neighbor (KNN) models in forecasting rice prices in Indonesia using monthly data from January 2010 to March 2024. The data is divided into 80% training and 20% testing. The ARIMA(1,1,0) model was selected as the best model based on the formal test and AIC criteria, while the best KNN parameter combination was k = 8, the 'auto' algorithm, Manhattan metric, and 'uniform' weighting. This study reveals that ARIMA outperforms KNN, yielding lower MAPE and RMSE values, and effectively capturing long-term trends. However, ARIMA is less responsive to sudden fluctuations. Conversely, KNN excels in recognizing complex patterns but struggles with high volatility. Thus, ARIMA suits linear and stable data, while KNN is better suited for complex data.
URI: http://repository.ipb.ac.id/handle/123456789/160665
Appears in Collections:UT - Mathematics

Files in This Item:
File Description SizeFormat 
cover_G5401201012_adad0318522341afaee8d63a899cfd21.pdfCover698.37 kBAdobe PDFView/Open
fulltext_G5401201012_7b440881db97435a970692f52af0e0c6.pdf
  Restricted Access
Fulltext1.08 MBAdobe PDFView/Open
lampiran_G5401201012_5060a44437224a6bb56e7df12035049a.pdf
  Restricted Access
Lampiran366.22 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.