Please use this identifier to cite or link to this item:
http://repository.ipb.ac.id/handle/123456789/160332Full metadata record
| DC Field | Value | Language |
|---|---|---|
| dc.contributor.advisor | Silalahi, Bib Paruhum | |
| dc.contributor.advisor | Mayyani, Hidayatul | |
| dc.contributor.author | Anisa, : Zahra Fahira | |
| dc.date.accessioned | 2024-12-26T07:40:50Z | |
| dc.date.available | 2024-12-26T07:40:50Z | |
| dc.date.issued | 2024 | |
| dc.identifier.uri | http://repository.ipb.ac.id/handle/123456789/160332 | |
| dc.description.abstract | Salah satu permasalahan yang sering terjadi dalam bidang pendistribusian barang atau jasa, terutama dalam masalah pengoptimalan rute pengirimannya adalah Travelling Salesman Problem (TSP). Travelling Salesman Problem merupakan suatu permasalahan dalam menentukan rute terpendek, di mana seorang salesman harus mengunjungi setiap kota tepat satu kali, dimulai dari kota awal dan berakhir kembali ke kota awal tersebut. Dalam penelitian ini, TSP akan diselesaikan menggunakan algoritma meta-heuristik yaitu Grey Wolf Optimization (GWO). Selain itu, solusi akhir yang diperoleh akan dibandingkan dengan beberapa algoritma lainnya di antaranya adalah Branch and Bound, Ant Colony Optimization, Bee Colony Optimization, dan Simulated Annealing. Berdasarkan hasil percobaan, algoritma GWO menunjukkan kinerja yang lebih baik dengan solusi yang mendekati optimal dibandingkan algoritma lainnya. | |
| dc.description.abstract | One of the common problems in the field of goods or service distribution, especially in optimizing delivery routes, is the Travelling Salesman Problem (TSP). The Travelling Salesman Problem is a problem of determining the shortest route, where a salesman must visit each city exactly once, starting and ending at the same city. In this study, TSP will be solved using a meta-heuristic algorithm known as Grey Wolf Optimization (GWO). Furthermore, the final solution obtained will be compared with several other algorithms, including Branch and Bound, Ant Colony Optimization, Bee Colony Optimization, and Simulated Annealing. Based on the experiment results, the GWO algorithm shows better performance with a solution that is close to optimal compared to other algorithms. | |
| dc.description.sponsorship | ||
| dc.language.iso | id | |
| dc.publisher | IPB University | id |
| dc.title | Penyelesaian Travelling Salesman Problem Menggunakan Algoritma Grey Wolf Optimization | id |
| dc.title.alternative | ||
| dc.type | Skripsi | |
| dc.subject.keyword | algoritma 2-opt | id |
| dc.subject.keyword | Grey Wolf Optimization | id |
| dc.subject.keyword | jarak Hamming | id |
| dc.subject.keyword | Travelling Salesman Problem | id |
| Appears in Collections: | UT - Mathematics | |
Files in This Item:
| File | Description | Size | Format | |
|---|---|---|---|---|
| cover_G5401201006_ea6b133ceeee48af8cf301fd8a0019d1.pdf | Cover | 359.72 kB | Adobe PDF | View/Open |
| fulltext_G5401201006_c385997d713b41bc828ccc1528e2a481.pdf Restricted Access | Fulltext | 1.24 MB | Adobe PDF | View/Open |
| lampiran_G5401201006_9f5ba60e35bb4676b29621b6956d9690.pdf Restricted Access | Lampiran | 258.06 kB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.