Please use this identifier to cite or link to this item: http://repository.ipb.ac.id/handle/123456789/160290
Title: Pengembangan Identifikasi Otomatis untuk Beberapa Telur Cacing Parasit pada Domba
Other Titles: Identification for Multiple Species of Parasitic Worm Eggs in Sheep
Authors: Arif, Ridi
Karja, Ni Wayan Kurniani
Indah, Khoerunnisa Kania
Issue Date: 2024
Publisher: IPB University
Abstract: Sistem pendeteksi dini kecacingan pada domba secara cepat, real-time, dan akurat diperlukan untuk mencegah infeksi kecacingan pada domba. Oleh karena itu, penelitian ini bertujuan membuat sistem identifikasi telur parasit cacing multispesies yaitu Strongyle, Moniezia sp., Trichuris sp., dan Paramphistomum sp secara otomatis dengan algoritma YOLO (You Only Look Once). Sistem identifikasi dibuat dengan melakukan pengambilan gambar telur cacing sebagai dataset, melakukan anotasi dataset, pengembangan sistem, dan pengujian sistem algoritma. Pengembangan sistem identifikasi telur cacing dilakukan oleh mitra penelitian yaitu PT. Vox Digital Kreatif. Sistem berhasil mendeteksi multiple spesies cacing namun belum optimal. Kemampuan algoritma yang belum optimal melakukan identifikasi dan kuantifikasi dapat disebabkan jumlah dataset yang sedikit, telur terlalu padat, dan kualitas gambar kurang baik
A fast, real-time, and accurate early detection system for helminthiasis in sheep is needed to prevent helminthiasis infection in sheep. Therefore, this study aims to create an automatic identification system for eggs of multispecies helminth parasites namely Strongyle, Moniezia sp., Trichuris sp., and Paramphistomum sp. using the YOLO (You Only Look Once) algorithm. The identification system is made by taking pictures of worm eggs as datasets, annotating the datasets, developing the system, and testing the algorithm system. The worm egg identification system development was carried out by our research partner, PT Vox Digital Kreatif. The multi-species worm egg identification system successfully detected multiple worm species, albeit suboptimal. The cause of such results can be affected by the small number of datasets, high density of the eggs, and poor image quality.
URI: http://repository.ipb.ac.id/handle/123456789/160290
Appears in Collections:UT - Animal Disease and Veterinary Health

Files in This Item:
File Description SizeFormat 
cover_B0401201033_a61522a360864eebaf95882424d0f2fe.pdfCover1.14 MBAdobe PDFView/Open
fulltext_B0401201033_6aa02a80d43f41b984f75c6f07b6d97b.pdf
  Restricted Access
Fulltext1.76 MBAdobe PDFView/Open
lampiran_B0401201033_dc26b77048084d9e84964082534261a3.pdf
  Restricted Access
Lampiran771.1 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.