Please use this identifier to cite or link to this item:
http://repository.ipb.ac.id/handle/123456789/160113Full metadata record
| DC Field | Value | Language |
|---|---|---|
| dc.contributor.advisor | Budiarti, Retno | - |
| dc.contributor.advisor | Septyanto, Fendy | - |
| dc.contributor.author | Firdaus, Farah | - |
| dc.date.accessioned | 2024-12-09T15:27:15Z | - |
| dc.date.available | 2024-12-09T15:27:15Z | - |
| dc.date.issued | 2024 | - |
| dc.identifier.uri | http://repository.ipb.ac.id/handle/123456789/160113 | - |
| dc.description.abstract | Banyak masyarakat yang semakin sadar akan risiko, sehingga penggunaan asuransi bermotor banyak diminati sebagai langkah pencegahan. Penelitian ini bertujuan untuk mengelompokkan pelanggan asuransi kendaraan bermotor menggunakan metode k-modes clustering pada data kategorik dengan jarak simple matching. Hasil yang didapatkan yaitu terbentuk tiga cluster yang divalidasi melalui metode elbow dan Davies-Bouldin Index (DBI). Setelah dilakukan clustering, tahap selanjutnya menganalisis faktor-faktor yang memengaruhi frekuensi klaim dalam setiap cluster yang terbentuk dengan pemodelan regresi. Cluster 1 dimodelkan dengan regresi logistik binomial, sedangkan cluster 2 dan cluster 3 dimodelkan dengan regresi binomial negatif sesuai dengan distribusi data masing-masing. Hasil analisis menunjukkan bahwa pada cluster 2, terdapat lima variabel yang signifikan memengaruhi frekuensi klaim. Sementara itu, pada cluster 1 dan 3 terdapat enam variabel yang memengaruhi frekuensi klaim. | - |
| dc.description.abstract | As more and more people become aware of the risks, motor vehicle insurance is increasingly popular as a preventive measure. In this study, classify motor vehicles insurance customers using the k-modes clustering method on category data with simple matching distance. The results indicate the formation of three clusters, validated through the elbow method and the Davies-Bouldin Index (DBI). After clustering, the next step is to analyze the factors that influence the frequency of claims in each cluster using regression modeling. Cluster 1 was modeled with binomial logistic regression, while cluster 2 and cluster 3 were modeled with negative binomial regression, according to the distribution of each dataset. The analysis results show that in cluster 2, five variables significantly affect claim frequency. Meanwhile, in clusters 1 and 3, six variables influence claim frequency. | - |
| dc.description.sponsorship | null | - |
| dc.language.iso | id | - |
| dc.publisher | IPB University | id |
| dc.title | Analisis Clustering Menggunakan Metode K-Modes dan Pemodelan Frekuensi Klaim pada Asuransi Kendaraan Bermotor | id |
| dc.title.alternative | null | - |
| dc.type | Skripsi | - |
| dc.subject.keyword | asuransi kendaraan bermotor | id |
| dc.subject.keyword | k-modes clustering | id |
| dc.subject.keyword | regresi binomial negatif | id |
| dc.subject.keyword | regresi logistik binomial | id |
| Appears in Collections: | UT - Actuaria | |
Files in This Item:
| File | Description | Size | Format | |
|---|---|---|---|---|
| cover_G5402201040_d3f324875ee040a982e4065519513c83.pdf | Cover | 2.29 MB | Adobe PDF | View/Open |
| fulltext_G5402201040_7dfffd5b4d9b4fc58256ea173b48cb02.pdf Restricted Access | Fulltext | 9.75 MB | Adobe PDF | View/Open |
| lampiran_G5402201040_d31bdcbbe0044024bb2cf4c25b3a3be4.pdf Restricted Access | Lampiran | 993.39 kB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.