Please use this identifier to cite or link to this item: http://repository.ipb.ac.id/handle/123456789/159454
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorBukhari, Fahren-
dc.contributor.advisorSilalahi, Bib Paruhum-
dc.contributor.authorMarpaung, Yosef Felix Ygga-
dc.date.accessioned2024-11-13T15:39:14Z-
dc.date.available2024-11-13T15:39:14Z-
dc.date.issued2024-
dc.identifier.urihttp://repository.ipb.ac.id/handle/123456789/159454-
dc.description.abstractPenentuan lokasi suatu fasilitas dilakukan agar lokasi berada di posisi yang optimal sesuai kendala yang ada. Penelitian ini memformulasikan dan menyelesaikan model optimasi dalam penentuan lokasi fasilitas vaksinasi yang mempertimbangkan jarak menuju fasilitas, tingkat kepadatan penduduk, dan jumlah kasus terkonfirmasi COVID-19 di Kota San Juan, Filipina. Selain itu, optimasi dinamis juga dilakukan untuk memperbarui lokasi seiring waktu berdasarkan populasi yang belum divaksinasi. Kedua proses optimasi diformulasikan dengan model Integer Nonlinear Programming (INLP) dengan sebuah fungsi tujuan tunggal dan diselesaikan dengan metode algoritme genetika dengan bantuan bahasa pemrograman python. Hasil optimasi menunjukkan bahwa peningkatan jumlah fasilitas vaksinasi dapat memperpendek jarak tempuh rata-rata yang meningkatkan aksesibilitas dan memfokukan vaksinasi terutama di area dengan populasi padat dan tingkat kasus COVID-19 tinggi. Dalam optimasi dinamis, vaksinasi difokuskan di daerah yang belum menyelesaikan proses vaksinasi. Hal ini mampu mengefektifkan dan mengefisienkan proses berjalannya vaksinasi sesuai jumlah lokasi dan rentang periode waktu yang dapat ditentukan.-
dc.description.abstractDetermining the optimal location of a facility is crucial to ensure its strategic positioning within existing constraints. This research aims to formulate and solve an optimization model for locating vaccination facilities, considering distance, population density, and the number of confirmed COVID-19 cases in San Juan City, Philippines. Additionally, dynamic optimization is performed to update facility locations over time based on the unvaccinated population. Both processes are modeled using Integer Nonlinear Programming (INLP) with a single objective function and solved using a genetic algorithm implemented in Python. The results indicate that increasing the number of vaccination facilities decreases average travel distance, improving accessibility, and concentrating efforts in densely populated areas and high COVID-19 cases. In dynamic optimization, facility locations are adjusted over specific periods, focusing on areas with incomplete vaccination coverage. This approach enhances the efficiency and effectiveness of the vaccination process by optimizing the number of facilities and time periods involved.-
dc.description.sponsorshipnull-
dc.language.isoid-
dc.publisherIPB Universityid
dc.titleOptimasi Lokasi Fasilitas Vaksinasiid
dc.title.alternativenull-
dc.typeSkripsi-
dc.subject.keywordOptimasiid
dc.subject.keywordAlgoritme genetikaid
dc.subject.keywordInteger Nonlinear Programmingid
Appears in Collections:UT - Mathematics

Files in This Item:
File Description SizeFormat 
cover_G5401201044_161285b8870e4d6c881ce82c84e594e2.pdfCover329.59 kBAdobe PDFView/Open
fulltext_G5401201044_fa298910a15d4197b98181b0b606fc30.pdf
  Restricted Access
Fulltext10.07 MBAdobe PDFView/Open
lampiran_G5401201044_510f0b0387ef45c88ba0a6f3c8bd0330.pdf
  Restricted Access
Lampiran3.21 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.