Please use this identifier to cite or link to this item: http://repository.ipb.ac.id/handle/123456789/159128
Title: Perbandingan Kinerja Model Klasifikasi Support Vector Machine dan K-Nearest Neighbors dalam Mendiagnosis Anemia
Other Titles: Performance Comparison of Support Vector Machine and K-Nearest Neighbors Classification Models in Diagnosing Anemia
Authors: Julianto, Mochamad Tito
Mangku, I Wayan
Al-Fariz, Buya
Issue Date: 2024
Publisher: IPB University
Abstract: Anemia merupakan masalah kesehatan yang ditandai dengan penurunan kadar hemoglobin di bawah batas normal. Pendekatan yang lebih baik dalam diagnosis anemia diperlukan untuk memastikan penanganan yang tepat. Penelitian ini bertujuan membandingkan kinerja beberapa model klasifikasi pada machine learning untuk mendiagnosis anemia menggunakan data dengan variabel gender, hemoglobin, hematocrit, MCH, MCHC, MCV, RBC, dan variabel anemia. Empat model yang digunakan, yaitu support vector machine (SVM) kernel linear, support vector machine (SVM) kernel polynomial, support vector machine (SVM) kernel radial basis function, dan k-nearest neighbors (KNN). Data diolah menggunakan metode Mahalanobis distance untuk penanganan pencilan, min-max scaler untuk transformasi data, dan hyperparameters tuning untuk mengoptimalkan kinerja model. Berdasarkan hasil penelitian, SVM kernel polynomial menunjukkan kinerja terbaik dari segi accuracy, precision, recall, dan f1-score. Namun, dari sisi efisiensi, KNN menjadi yang paling unggul. Sementara itu, SVM kernel linear menunjukkan keseimbangan terbaik antara kinerja dan efisiensi sehingga dapat dipertimbangkan sebagai alternatif yang optimal dalam diagnosis anemia.
Anemia is an health problem characterized by a decrease in hemoglobin levels below normal limits. A better approach in the diagnosis of anemia is needed to ensure proper treatment. This study aims to compare the performance of several classification models in machine learning to diagnose anemia using data with gender, hemoglobin, hematocrit, MCH, MCHC, MCV, RBC, and anemia variables. Four models are used, namely support vector machine (SVM) linear kernel, support vector machine (SVM) polynomial kernel, support vector machine (SVM) radial basis function kernel, and k-nearest neighbors (KNN). Data are processed using the Mahalanobis distance method for outlier handling, min-max scaler for data transformation, and hyperparameters tuning to optimize model performance. Based on the results, SVM kernel polynomial showed the best performance in terms of accuracy, precision, recall, and f1-score. However, in terms of efficiency, KNN is the most superior. Meanwhile, linear kernel SVM shows the best balance between performance and efficiency so that it can be considered as an optimal alternative in anemia diagnosis.
URI: http://repository.ipb.ac.id/handle/123456789/159128
Appears in Collections:UT - Mathematics

Files in This Item:
File Description SizeFormat 
cover_G5401201054_85150201f6114ba28b5b3e4fb75a8334.pdfCover2.35 MBAdobe PDFView/Open
fulltext_G5401201054_45f5ca38fcd541a2af56342c50dc26b9.pdf
  Restricted Access
Fulltext3.45 MBAdobe PDFView/Open
lampiran_G5401201054_39c848c3aef5413b86a837e14d78956f.pdf
  Restricted Access
Lampiran2.15 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.