Please use this identifier to cite or link to this item: http://repository.ipb.ac.id/handle/123456789/158942
Title: Penggunaan Resampling Bootstrap pada Path Analysis dalam Mengatasi Pelanggaran Asumsi Normalitas
Other Titles: The Application of Resampling Bootstrap in Path Analysis to Address Violations of the Normality Assumption
Authors: Budiarti, Retno
Sumarno, Hadi
Putri, Wulan Septiyana Berlian
Issue Date: 2024
Publisher: IPB University
Abstract: Penelitian ini bertujuan mengatasi pelanggaran asumsi normalitas dalam path analysis dengan menggunakan metode resampling bootstrap dalam mengukur pengaruh premi dan hasil underwriting terhadap return on assets (ROA) pada perusahaan asuransi. Latar belakang penelitian ini didasari oleh pentingnya pemahaman yang mendalam mengenai faktor-faktor yang memengaruhi kinerja perusahaan asuransi, khususnya terkait premi dan hasil underwriting. Metode penelitian meliputi pengumpulan data sekunder dari laporan keuangan perusahaan asuransi dan analisis data menggunakan metode path analysis yang dioptimalkan dengan resampling bootstrap untuk meningkatkan akurasi estimasi. Hasil penelitian menunjukkan bahwa premi dan hasil underwriting berpengaruh signifikan terhadap ROA perusahaan asuransi. Temuan baru dari penelitian ini adalah penggunaan teknik resampling bootstrap dapat mengurangi bias estimasi dan meningkatkan hasil path analysis. Implikasi dari penelitian ini mengindikasikan bahwa perusahaan asuransi dapat memanfaatkan hasil penelitian ini untuk mengoptimalkan strategi premi dan underwriting guna meningkatkan kinerja keuangan secara keseluruhan.
This research aims to address violations of the normality assumption in path analysis using the bootstrap resampling method to measure the influence of premiums and underwriting results on return on assets (ROA) in insurance companies. The background of this study is based on the importance of a deep understanding of the factors influencing the performance of insurance companies, particularly related to premiums and underwriting. The research methodology includes collecting of secondary data from insurance companies' financial reports and data analysis using path analysis method optimized with bootstrap resampling to improve estimation accuracy. The research findings indicate that premiums and underwriting results significantly impact the ROA of insurance companies. A novel finding of this research is that using the bootstrap resampling technique can reduce estimation bias and enhance the results of path analysis. The implications of this study suggest that insurance companies can utilize these findings to optimize premium and underwriting strategies to enhance overall financial performance.
URI: http://repository.ipb.ac.id/handle/123456789/158942
Appears in Collections:UT - Actuaria

Files in This Item:
File Description SizeFormat 
cover_G5402201007_a9789e173bb3460c8b70789f6a4ecef1.pdfCover1.97 MBAdobe PDFView/Open
fulltext_G5402201007_9bfadfe56c734001b52be1eb4fd7e643.pdf
  Restricted Access
Fulltext7 MBAdobe PDFView/Open
lampiran_G5402201007_9cc23c9478254574b303739168b956fa.pdf
  Restricted Access
Lampiran2.24 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.