Please use this identifier to cite or link to this item: http://repository.ipb.ac.id/handle/123456789/158864
Title: Algoritma Decision Tree of Machine Learning Dalam Klasifikasi Tanaman Kopi Agroforestri dan Kopi Monokultur dengan Citra Satelit SPOT-7 di Kabupaten Tanggamus
Other Titles: Decision Tree Algorithm of Machine Learning in Classification of Agroforestry Coffee and Monoculture Coffee Plants with SPOT-7 Satellite Imagery in Tanggamus Regency
Authors: Jaya, I Nengah Surati
Nurfaizin, Fitrianto
Issue Date: 2024
Publisher: IPB University
Abstract: Penelitian ini menjelaskan pengembangan algoritma machine learning untuk membangun model algoritma dalam mendeteksi dan mengidentifikasi tanaman kopi agroforestri dan kopi monokultur menggunakan pendekatan machine larning. Data utama yang digunakan dalam penelitian ini adalah citra satelit SPOT-7 untuk mengembangkan indeks vegetasi (NDVI, VDVI, VARI, NRGI) dan data bio-sosio-geofisik (proximity jalan, proximity sungai, proximity permukiman, elevasi, kelerengan) serta tutupan lahan. Penelitian ini menemukan algoritma terbaik untuk mendeteksi tanaman kopi agroforestri dan kopi monokultur menggunakan algoritma decision tree dengan parameter information gain dan peubah NDVI, VDVI, NRGI, elevasi, proximity jalan, proximity sungai, tutupan lahan. Algoritma ini mendapatkan maximal depth 31, tanpa pruning dan pre-prunning, minimal leaf size 51, minimal size for split 41, pre-prunning alternative 0. Algoritma ini menghasilkan overall accuracy 94,7% dan kappa accuracy 93,9%. Kopi agroforestri mempunyai user accuracy 91,6% dan producer accuracy 87,8%, kopi monokultur mempunyai user accuracy 92,7% dan producer accuracy 95,3%.
This study describes the development of machine learning algorithms to build algorithm models in detecting and identifying agroforestry and monoculture coffee plants using a machine learning approach. The main data used in this study were SPOT-7 satellite imagery to develop vegetation indices (NDVI, VDVI, VARI, NRGI) and bio-socio-geophysical data (road proximity, river proximity, settlement proximity, elevation, slope) and land cover. This study found the best algorithm for detecting agroforestry and monoculture coffee plants using a decision tree algorithm with information gain parameter with variables of NDVI, VDVI, NRGI, elevation, road proximity, river proximity, land cover. This algorithm determined maximum depth of 31, without pruning and pre-prunning, minimum leaf size of 51, minimum size for split of 41, and pre-prunning alternative of 0. The algorithm provided overall accuracy of 94,7% and kappa accuracy of 93,9%. The producer’s and user’s accuracy of agroforestry coffee were 87,8% and 91,6%, while the producer's and user's accuracy of monoculture coffee were 95,3% and 92,7%.
URI: http://repository.ipb.ac.id/handle/123456789/158864
Appears in Collections:UT - Forest Management

Files in This Item:
File Description SizeFormat 
cover_E1401201076_c66fe854f83e4510a40e5f345dd804cb.pdfCover445.64 kBAdobe PDFView/Open
fulltext_E1401201076_45a84286d88149fa9678239d08d2ebad.pdf
  Restricted Access
Fulltext3.87 MBAdobe PDFView/Open
lampiran_E1401201076_e4751d74cf234dd7b28961d3f9ba9dd4.pdf
  Restricted Access
Lampiran756.44 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.