Please use this identifier to cite or link to this item: http://repository.ipb.ac.id/handle/123456789/158305
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorHaryanto, Toto-
dc.contributor.authorSaid, Hanun Athaya-
dc.date.accessioned2024-08-23T02:29:03Z-
dc.date.available2024-08-23T02:29:03Z-
dc.date.issued2024-
dc.identifier.urihttp://repository.ipb.ac.id/handle/123456789/158305-
dc.description.abstractKonsumsi daging di Indonesia semakin meningkat seiring dengan terus meningkatnya jumlah penduduk, pendapatan, dan konsumsi protein hewani. Pengidentifikasian sumber daging menjadi isu yang sensitif dan penting terkait dengan keamanan dan jaminan produk makanan sehingga tindakan pemalsuan daging dapat dihindari. Penelitian ini menggunakan model Convolutional Neural Network (CNN) dengan arsitektur EfficientNetB0, VGG16, dan InceptionV3. Data yang digunakan berupa citra daging sapi dan daging babi yang berjumlah 500 citra. Beberapa hyperparameter diuji untuk mendapatkan performa model yang paling optimal seperti freeze rate 50% dan 75%, jumlah dense layer yang digunakan, dan learning rate 0,001 dan 0,0001. Hasil penelitian menunjukkan arsitektur EfficientNetB0 belum mampu membedakan citra daging sapi dan daging babi dengan validation accuracy sebesar 64,58% dan testing accuracy sebesar 50%. InceptionV3 dengan freeze rate 75%, learning rate 0,0001, dan 1 dense layer merupakan model paling optimal dengab validation accuracy sebesar 95,83% dan testing accuracy sebesar 75%. Sementara itu, VGG16 memiliki validation accuracy yang lebih rendah sebesar 93,75% dan testing accuracy sebesar 65%.-
dc.description.abstractMeat consumption in Indonesia is continuously increasing in line with the increase of population, income, and animal protein consumption. Identifying the source of meat has become a sensitive and important issue related to the safety and assurance of food products in order to avoid meat adulteration. This research uses the Convolutional Neural Network (CNN) model with EfficientNetB0, VGG16, and InceptionV3 architecture. The data used are images of beef and pork, with 250 images each. Several hyperparameters were tested to obtain the most optimal model performance such as 50% and 75% freeze rate, number of dense layers used, and learning rate 0,001 and 0,0001. The results indicate that EfficientNetB0 architecture has not been able to distinguish between beef and pork images with a validation accuracy of 64,58% and testing accuracy of 50%. InceptionV3 with a freeze rate of 75%, learning rate of 0,0001, and 1 dense layer becomes the most optimal model with a validation accuracy of 95,83% and testing accuracy of 75%. Meanwhile, VGG16 has a lower validation accuracy of 93,75% and testing accuracy of 65%.-
dc.description.sponsorshipnull-
dc.language.isoid-
dc.publisherIPB Universityid
dc.titleAnalisis Klasifikasi Citra Daging Sapi dan Daging Babi Menggunakan VGG16, EfficientNetB0, dan InceptionV3id
dc.title.alternativeBeef and Pork Image Classification Analysis Using VGG16, EfficientNetB0, and Inception V3-
dc.typeSkripsi-
dc.subject.keywordConvolutional Neural Networkid
dc.subject.keywordEfficientNetB0id
dc.subject.keywordIdentifikasi Dagingid
dc.subject.keywordInceptionV3id
dc.subject.keywordVGG16id
Appears in Collections:UT - Computer Science

Files in This Item:
File Description SizeFormat 
cover_G6401201049_f909e5a8eb22486c87eff7bdac3d7dbf.pdfCover1.99 MBAdobe PDFView/Open
fulltext_G6401201049_05ab6b50d31e4a2499d45eb98e650d18.pdf
  Restricted Access
Fulltext9.39 MBAdobe PDFView/Open
lampiran_G6401201049_1a32d186fc4343d4a6272518243618b1.pdf
  Restricted Access
Lampiran8.11 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.