Please use this identifier to cite or link to this item:
http://repository.ipb.ac.id/handle/123456789/157584| Title: | Dinamika Perubahan Tutupan Lahan Menggunakan Penginderaan Jauh di Kota Dumai, Riau |
| Other Titles: | The Dynamics of Land Cover Change Using Remote Sensing in Dumai City, Riau |
| Authors: | Puspaningsih, Nining AGUSTIN, NURUL ANDALUCIA |
| Issue Date: | 2024 |
| Publisher: | IPB University |
| Abstract: | Perubahan tutupan lahan dapat terjadi disebabkan oleh beberapa faktor, diantaranya adalah pembukaan lahan menjadi perkebunan, kebakaran hutan, dan penebangan liar. Kota Dumai yang terletak di provinsi Riau, memiliki tingkat deforestasi yang relatif tinggi. Perubahan tutupan lahan dapat di monitoring melalui penginderaan jauh. Penelitian ini bertujuan untuk menganalisis dinamika perubahan tutupan lahan menggunakan citra Landsat 8 OLI/TIRS tahun 2013, 2015, 2017, dan 2023. Analisis perubahan tutupan lahan menggunakan metode maximum likelihood classification. Hasil penelitian menunjukkan bahwa klasifikasi tutupan lahan terdiri dari 7 kelas yaitu badan air, semak belukar, hutan lahan kering sekunder, hutan mangrove sekunder, perkebunan, pemukiman, dan lahan terbuka. Hasil klasifikasi tutupan lahan diperoleh hasil uji akurasi dengan rata-rata akurasi produsen (91%), rata-rata akurasi pengguna (87%), akurasi keseluruhan (88%), dan akurasi kappa (86%). Dinamika perubahan tutupan lahan yang terjadi di area terbakar tahun (2013-2015-2017-2023) didominasi dengan dinamika T-T-PK-PK (Lahan terbuka-lahan terbuka-perkebunan-perkebunan). Land cover changes can occur due to several factors, including land clearing for plantations, forest fires, and illegal logging. Dumai City, located in the Riau province, has a relatively high rate of deforestation. The changes in land cover are monitored through remote sensing. This study aims to analyze the dynamics of land cover change using Landsat 8 OLI/TIRS imagery from the years 2013, 2015, 2017, and 2023. The analysis of land cover change is conducted using the maximum likelihood classification method. The results show that the land cover classification consists of 7 classes: water bodies, shrubs, secondary dryland forest, secondary mangrove forest, plantations, settlements, and open land. The land cover classification results yielded an accuracy test with an average producer accuracy of 91%, an average user accuracy of 87%, an overall accuracy of 88%, and a kappa accuracy of 86%. The dynamics of land cover change in the burned area (2013-2015-2017-2023) are predominantly characterized by the sequence (T-T-PK-PK) (Open land-open land-plantation-plantation). |
| URI: | http://repository.ipb.ac.id/handle/123456789/157584 |
| Appears in Collections: | UT - Forest Management |
Files in This Item:
| File | Description | Size | Format | |
|---|---|---|---|---|
| cover_E1401201035_f79071574b04447bb0c6921e759c906c.pdf | Cover | 903.19 kB | Adobe PDF | View/Open |
| fulltext_E1401201035_642c0ed751784470a7e12a8e8df50b3c.pdf Restricted Access | Fulltext | 1.94 MB | Adobe PDF | View/Open |
| lampiran_E1401201035_093f9ee03d5542708d4c56c991a3ee63.pdf Restricted Access | Lampiran | 243.25 kB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.