Please use this identifier to cite or link to this item:
http://repository.ipb.ac.id/handle/123456789/157063| Title: | Sistem Keamanan Pintu Ruangan Menggunakan Face Recognition dengan Algoritma Local Binary Pattern Histogram pada PT. Pindad |
| Other Titles: | Room Door Security System Using Face Recognition with Local Binary Pattern Histogram Algorithm at PT. Pindad |
| Authors: | Wijaya, Sony Hartono Sandyafi, Rifqi Januar |
| Issue Date: | 2024 |
| Publisher: | IPB University |
| Abstract: | Keamanan ruangan diperlukan untuk melindungi dokumen dan barang
rahasia milik perusahaan. Sistem pengaman seperti PIN keypad dan Radio
Frequency Identification (RFID) telah dikembangkan, tetapi kontrol akses fisik
memiliki kelemahan seperti bisa dicuri, dilupakan, dan diduplikasi. Oleh karena itu,
sistem keamanan berbasis biometrik muncul sebagai solusi. Penelitian ini bertujuan
mengembangkan alat keamanan ruangan modern menggunakan pengenalan wajah
dengan metode Local Binary Pattern Histogram (LBPH), terintegrasi dengan
aplikasi berbasis web. LBPH menggabungkan metode Local Binary Pattern (LBP)
dan Histogram untuk meningkatkan kinerja pengenalan wajah dengan
merepresentasikan gambar wajah, mereduksi dimensi gambar, dan mengekstraksi
fitur tekstur. Implementasi sistem ini menunjukkan hasil akurasi pada pengujian
dengan data latih (98%) dan pengujian real time pada jarak 30 cm (95%), meskipun
akurasi menurun pada jarak 100 cm (70%). Evaluasi data menunjukkan akurasi,
presisi, recall, dan f1 score sebesar 98% pada semua kelas Room security is necessary to protect confidential documents and items belonging to the company. Security systems such as PIN keypads, and Radio Frequency Identification (RFID) have been developed, but physical access control has disadvantages such as being stolen, forgotten, or duplicated. Therefore, biometric-based security systems are emerging as a solution. This research aims to develop a modern room security tool using face recognition with Local Binary Pattern Histogram (LBPH) method, integrated with a web-based application to track access to the room. LBPH combines Local Binary Pattern (LBP) and Histogram methods to improve face recognition performance by representing face images, reducing image dimensions, and extracting texture features. The implementation of this system shows accuracy results in testing with training data (98%) and real time testing at a distance of 30 cm (95%), although accuracy decreases at a distance of 100 cm (70%). Data evaluation showed accuracy, precision, recall, and f1 score of 98% in all classes. |
| URI: | http://repository.ipb.ac.id/handle/123456789/157063 |
| Appears in Collections: | UT - Computer Engineering Tehcnology |
Files in This Item:
| File | Description | Size | Format | |
|---|---|---|---|---|
| cover_J0304202164_2c4e17c670bd4533b1d7b14d940f9bf6.pdf | Cover | 2.77 MB | Adobe PDF | View/Open |
| fulltext_J0304202164_64077dbee1f440c5a043aa686c2d220f.pdf Restricted Access | Fulltext | 9.48 MB | Adobe PDF | View/Open |
| lampiran_J0304202164_2035d145a2494e39b16678b54d56d15d.pdf Restricted Access | Lampiran | 1.47 MB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.