Please use this identifier to cite or link to this item: http://repository.ipb.ac.id/handle/123456789/157063
Title: Sistem Keamanan Pintu Ruangan Menggunakan Face Recognition dengan Algoritma Local Binary Pattern Histogram pada PT. Pindad
Other Titles: Room Door Security System Using Face Recognition with Local Binary Pattern Histogram Algorithm at PT. Pindad
Authors: Wijaya, Sony Hartono
Sandyafi, Rifqi Januar
Issue Date: 2024
Publisher: IPB University
Abstract: Keamanan ruangan diperlukan untuk melindungi dokumen dan barang rahasia milik perusahaan. Sistem pengaman seperti PIN keypad dan Radio Frequency Identification (RFID) telah dikembangkan, tetapi kontrol akses fisik memiliki kelemahan seperti bisa dicuri, dilupakan, dan diduplikasi. Oleh karena itu, sistem keamanan berbasis biometrik muncul sebagai solusi. Penelitian ini bertujuan mengembangkan alat keamanan ruangan modern menggunakan pengenalan wajah dengan metode Local Binary Pattern Histogram (LBPH), terintegrasi dengan aplikasi berbasis web. LBPH menggabungkan metode Local Binary Pattern (LBP) dan Histogram untuk meningkatkan kinerja pengenalan wajah dengan merepresentasikan gambar wajah, mereduksi dimensi gambar, dan mengekstraksi fitur tekstur. Implementasi sistem ini menunjukkan hasil akurasi pada pengujian dengan data latih (98%) dan pengujian real time pada jarak 30 cm (95%), meskipun akurasi menurun pada jarak 100 cm (70%). Evaluasi data menunjukkan akurasi, presisi, recall, dan f1 score sebesar 98% pada semua kelas
Room security is necessary to protect confidential documents and items belonging to the company. Security systems such as PIN keypads, and Radio Frequency Identification (RFID) have been developed, but physical access control has disadvantages such as being stolen, forgotten, or duplicated. Therefore, biometric-based security systems are emerging as a solution. This research aims to develop a modern room security tool using face recognition with Local Binary Pattern Histogram (LBPH) method, integrated with a web-based application to track access to the room. LBPH combines Local Binary Pattern (LBP) and Histogram methods to improve face recognition performance by representing face images, reducing image dimensions, and extracting texture features. The implementation of this system shows accuracy results in testing with training data (98%) and real time testing at a distance of 30 cm (95%), although accuracy decreases at a distance of 100 cm (70%). Data evaluation showed accuracy, precision, recall, and f1 score of 98% in all classes.
URI: http://repository.ipb.ac.id/handle/123456789/157063
Appears in Collections:UT - Computer Engineering Tehcnology

Files in This Item:
File Description SizeFormat 
cover_J0304202164_2c4e17c670bd4533b1d7b14d940f9bf6.pdfCover2.77 MBAdobe PDFView/Open
fulltext_J0304202164_64077dbee1f440c5a043aa686c2d220f.pdf
  Restricted Access
Fulltext9.48 MBAdobe PDFView/Open
lampiran_J0304202164_2035d145a2494e39b16678b54d56d15d.pdf
  Restricted Access
Lampiran1.47 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.