Please use this identifier to cite or link to this item:
http://repository.ipb.ac.id/handle/123456789/155431Full metadata record
| DC Field | Value | Language |
|---|---|---|
| dc.contributor.advisor | Siskandar, Ridwan | - |
| dc.contributor.author | Firdayanti | - |
| dc.date.accessioned | 2024-08-02T03:03:14Z | - |
| dc.date.available | 2024-08-02T03:03:14Z | - |
| dc.date.issued | 2024 | - |
| dc.identifier.uri | http://repository.ipb.ac.id/handle/123456789/155431 | - |
| dc.description.abstract | Kurangnya keamanan dan tidak adanya pencatatan merupakan penyebab permasalahan yang sering muncul di Bengkel Elektromekanika. Pembuatan Sistem Manajemen Inventaris Alat Elektronika dengan Keamanan Face Recognition Berbasis Internet of Things merupakan solusi untuk masalah kehilangan alat di Lab Bengkel Elektromekanika. Penelitian ini bertujuan mengurangi risiko kehilangan alat melalui pencatatan otomatis yang terintegrasi dengan kotak penyimpanan dan website inventaris alat elektronika. Metode yang digunakan adalah studi pustaka dan observasi yang melibatkan penggunaan ESP32-CAM untuk mendeteksi wajah pengguna dan pengunci solenoid. Hasil pengujian menunjukkan bahwa ESP32-CAM mampu mendeteksi wajah dengan efektif pada jarak maksimal 75 cm dalam kondisi cahaya terang maupun redup. Rata-rata waktu pengenalan wajah selama pengujian adalah 13,17 detik. | - |
| dc.description.sponsorship | The lack of security and the absence of record-keeping are common issues in the Electromechanical Workshop. Developing an Electronic Equipment Inventory Management System with IoT-based Face Recognition Security is a solution to the problem of tool loss in the Electromechanical Workshop Lab. This study aims to reduce the risk of tool loss through automated record-keeping integrated with storage boxes and an electronic equipment inventory website. The methods used include literature review and observation, involving the use of ESP32-CAM for user face detection and a solenoid lock. The test results show that the ESP32-CAM can effectively detect faces at a maximum distance of 75 cm under both bright and dim lighting conditions. The average face recognition time during testing was 13.17 seconds. | - |
| dc.language.iso | id | - |
| dc.publisher | IPB University | id |
| dc.title | Sistem Manajemen Inventaris Alat Elektronika dengan Keamanana Face Recognition Berbasis Internet of Things | id |
| dc.title.alternative | Inventory Management System for Electronic Tools with Face Recogniton Security Based on the Internet of Things | - |
| dc.type | Tugas Akhir | - |
| dc.subject.keyword | esp32-cam | id |
| dc.subject.keyword | IoT | id |
| dc.subject.keyword | inventory management | id |
| dc.subject.keyword | face recognition | id |
| dc.subject.keyword | manajemen inventaris | id |
| Appears in Collections: | UT - Computer Engineering Tehcnology | |
Files in This Item:
| File | Description | Size | Format | |
|---|---|---|---|---|
| cover_J0304201069_c467a81e4f5b44c18ba3a2ea6340165d.pdf | Cover | 414.92 kB | Adobe PDF | View/Open |
| fulltext_J0304201069_89365f1ce8fb45b6b5ce2a535450824a.pdf Restricted Access | Fulltext | 3.47 MB | Adobe PDF | View/Open |
| lampiran_J0304201069_bf3e2ddaaaa34e12b63172765e93eb3f.pdf Restricted Access | Lampiran | 1.31 MB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.