Please use this identifier to cite or link to this item:
http://repository.ipb.ac.id/handle/123456789/155128| Title: | Analisis Gerombol Dampak Bencana Banjir di Indonesia Menggunakan Metode Self Organizing Maps |
| Other Titles: | |
| Authors: | Syafitri, Utami Dyah Rizki, Akbar Alayubi, Mufti Habibie |
| Issue Date: | 2024 |
| Publisher: | IPB University |
| Abstract: | Terdapat fenomena kecenderungan meningkatnya bencana alam dalam tiga dekade terakhir di Indonesia. Lebih dari 4 miliar orang terkena dampak peristiwa alam yang ekstrem pada tahun 1980-2010. Sebagai negara yang luas, penting untuk membuat pemetaan wilayah sehingga dapat meminimalisir kerugian yang ditimbulkan oleh bencana salah satunya banjir. Data dampak bencana banjir yang bersumber dari BNPB dengan 514 kabupaten/kota di Indonesia digunakan pada penelitian ini. Metode yang dapat digunakan untuk mencapai tujuan ini adalah dengan analisis gerombol, salah satunya dengan metode Self Organizing Maps (SOM). Metode SOM memiliki kelebihan yaitu merupakan perangkat visualisasi dan analisis untuk data berdimensi tinggi dan dapat menangani pencilan peubah ganda. Penggerombolan 514 kabupaten/kota di Indonesia tahun 2021 berdasarkan 10 peubah menghasilkan 7 gerombol. Gerombol 1,4 dan 5 dikategorikan sebagai gerombol yang memiliki dampak bencana banjir terbesar. Dampak bencana pada Gerombol 1 (Banjar) didominasi oleh banyaknya korban dan kerusakan fasilitas. Gerombol 1 (Banjar) didominasi oleh banyaknya korban dan kerusakan infrastruktur dampak bencana banjir. Gerombol 4 (Bandung, Indramayu, Bekasi, Cilacap, Wonogiri, Pekalongan, Kota Pekalongan, Alor, Lembata, Flores Timur) didominasi oleh banyaknya korban dan kerusakan rumah dampak bencana banjir. Gerombol 5 (Bima, Sumba Timur, Kupang, Rote Ndao, Sabu Raijua, Malaka, Kota Kupang) didominasi oleh banyaknya korban dan kerusakan infrastruktur dampak bencana banjir. There has been a trend of increasing natural disasters in Indonesia over the past three decades. More than 4 billion people were affected by extreme natural events from 1980 to 2010. As a large country, it is important to map out regions to minimize the losses caused by disasters, one of which is flooding. Data on the impact of flood disasters sourced from BNPB, covering 514 regencies/cities in Indonesia, was used in this study. A method that can be used to achieve this goal is cluster analysis, one of which is the Self-Organizing Maps (SOM) method. The SOM method has the advantage of being a visualization and analysis tool for high- dimensional data and can handle multiple variable outliers. The clustering of 514 regencies/cities in Indonesia in 2021 based on 10 variables resulted in 7 clusters. Clusters 1, 4, and 5 are categorized as clusters with the greatest impact of flood disasters. The disaster impact in Cluster 1 (Banjar) is dominated by the number of victims and damage to facilities. Cluster 1 (Banjar) is dominated by the number of victims and infrastructure damage due to flood disasters. Cluster 4 (Bandung, Indramayu, Bekasi, Cilacap, Wonogiri, Pekalongan, Pekalongan City, Alor, Lembata, East Flores) is dominated by the number of victims and house damage due to flood disasters. Cluster 5 (Bima, East Sumba, Kupang, Rote Ndao, Sabu Raijua, Malaka, Kupang City) is dominated by the number of victims and infrastructure damage due to flood disasters. |
| URI: | http://repository.ipb.ac.id/handle/123456789/155128 |
| Appears in Collections: | UT - Statistics and Data Sciences |
Files in This Item:
| File | Description | Size | Format | |
|---|---|---|---|---|
| cover_G1401201027_8a26c1c6e69f42148f5d1bffc632127c.pdf | Cover | 252.13 kB | Adobe PDF | View/Open |
| fulltext_G1401201027_be7f7e52b1e84623a07df12baca81880.pdf Restricted Access | Fulltext | 789.19 kB | Adobe PDF | View/Open |
| lampiran_G1401201027_276ff81f1ef74bc8885f18b9c04f9f03.pdf Restricted Access | Lampiran | 253.11 kB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.