Please use this identifier to cite or link to this item:
http://repository.ipb.ac.id/handle/123456789/155079| Title: | Pembuatan Sistem Penentu Seseorang Mendapatkan Bantuan Menggunakan Klasifikasi Naïve Bayes dengan R |
| Other Titles: | Creating a Decision Support System for Social Assistance Recipients Using the Naïve Bayes Classifier with R |
| Authors: | Mindara, Gema Parasti Rania, Rahma Fairuz |
| Issue Date: | 2024 |
| Publisher: | IPB University |
| Abstract: | Bantuan sosial merupakan salah satu upaya yang dilakukan oleh pemerintah
untuk membantu memenuhi kehidupan sehari-hari masyarakat dan meningkatkan
kesejahteraan masyarakat di suatu wilayah. Penelitian ini bertujuan untuk membuat
Shiny Dashboard untuk mengklasifikasikan seseorang termasuk ke dalam
kelompok penerima bantuan sosial atau tidak berdasarkan data input serta untuk
mengetahui performa model menggunakan metode Naïve Bayes. Pengklasifikasian
seseorang mendapatkan bantuan sosial dengan beberapa faktor seperti usia, status
perkawinan, jumlah anak, pendapatan, cara akses ke fasilitas desa, tersedianya
MCK, dan ketersediaan air bersih. Uji coba sistem yang dilakukan terhadap model
Naïve Bayes yang telah dibangun yaitu data input baru dikirim ke dalam dashboard
kemudian diklasifikasi dan otomatis tersimpan pada kolom menerima_bantuan.
Akurasi yang diperoleh model adalah sebesar 82% dari hasil perhitungan Confusion
Matrix. Dari hasil akurasi tersebut, dapat dikatakan model sudah cukup baik dalam
memprediksi dan sistem dashboard dapat diakses melalui shinyapps.io server. Social Assistance is one of the efforts made by the government to help meet the daily needs of the villagers and improve the welfare of people in a region. This research aims to create a Shiny dashboard to classify whether someone belongs to the group of social assistance recipients based on input data and to evaluate the model's performance using the Naïve Bayes method. Classifying social assistance eligibility based on several factors such as age, marital status, number of children, income, access to public facilities, availability of MCK, and access to clean water. The system testing conducted on the built Naïve Bayes model involves input testing, which is automatically entered into datatables, classified, and stored in the "menerima_bantuan" column. The model achieved an accuracy of 82% based on the Confusion Matrix calculations. From this accuracy result, it can be said that the model is quite good at making predictions and the dashboard system can be accessed through the shinyapps.io server |
| URI: | http://repository.ipb.ac.id/handle/123456789/155079 |
| Appears in Collections: | UT - Software Engineering Technology |
Files in This Item:
| File | Description | Size | Format | |
|---|---|---|---|---|
| cover_J0303201065_eeff1f8c53044d3da38ffaae492bc19e.pdf | Cover | 775.1 kB | Adobe PDF | View/Open |
| fulltext_J0303201065_74999af9e5eb42c1a407ecd640865f35.pdf Restricted Access | Fulltext | 1.95 MB | Adobe PDF | View/Open |
| lampiran_J0303201065_d534d08afaa14b2caf7ff5bd79756e2a.pdf Restricted Access | Lampiran | 343.19 kB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.