Please use this identifier to cite or link to this item:
http://repository.ipb.ac.id/handle/123456789/153582Full metadata record
| DC Field | Value | Language |
|---|---|---|
| dc.contributor.advisor | Ardiansyah, Firman | - |
| dc.contributor.advisor | Haryanto, Toto | - |
| dc.contributor.author | Ansari, Aysuka | - |
| dc.date.accessioned | 2024-07-12T06:55:04Z | - |
| dc.date.available | 2024-07-12T06:55:04Z | - |
| dc.date.issued | 2024 | - |
| dc.identifier.uri | http://repository.ipb.ac.id/handle/123456789/153582 | - |
| dc.description.abstract | Pada era internet saat ini, trailer umumnya diunggah melalui platform media sosial seperti YouTube. Melalui platform ini, penonton dapat mengakses serta memberikan sentimen mereka terhadap trailer film dengan mudah. Analisis sentimen terhadap komentar trailer film perlu dilakukan agar diperoleh trailer yang disukai oleh penonton sehingga minat penonton untuk menonton film tersebut dapat meningkat. Penelitian ini bertujuan mengembangkan model Natural Language Processing (NLP) dengan metode word embedding FastText dan arsitektur Gated Recurrent Unit (GRU) untuk analisis kecenderungan sentimen komentar di dalam trailer film Oppenheimer. Berdasarkan hasil pelatihan dan evaluasi diperoleh model TextBlob VADER sebagai model terbaik dengan accuracy bernilai 0,93. Hasil analisis kecenderungan sentimen pada masing-masing trailer film menggunakan model ini menghasilkan pengamatan bahwa trailer 2 lebih diminati penonton dibandingkan trailer 1. Selain itu, penelitian ini juga telah berhasil mengembangkan aplikasi web app sederhana untuk membantu proses analisis sentimen. | - |
| dc.description.abstract | In today's internet era, trailers are commonly uploaded on social media platforms like YouTube where viewers can easily access them and express their opinions. Sentiment analysis for a movie trailer is needed in order to create a trailer that is liked by the viewer so that it can increase the viewer’s interest in watching the movie. This research aims to develop a Natural Language Processing (NLP) model using the FastText word embedding method and Gated Recurrent Unit (GRU) architecture for analyzing sentiment tendencies in comments on the Oppenheimer’s movie trailers. Based on the training and evaluation results, the TextBlob VADER model was found to be the best model with an accuracy of 0,93. The sentiment trend analysis on each movie trailer using this model showed that trailer 2 was more favored by viewers compared to trailer 1. Additionally, this research successfully developed a simple web app to assist in the sentiment analysis process. | - |
| dc.description.sponsorship | null | - |
| dc.language.iso | id | - |
| dc.publisher | IPB University | id |
| dc.title | Analisis Sentimen Komentar Trailer Film Oppenheimer Pada YouTube Menggunakan GRU dan FastText Embedding | id |
| dc.title.alternative | Sentiment Analysis of Oppenheimer Movie Trailer Comments on YouTube using GRU and FastText Embedding | - |
| dc.type | Skripsi | - |
| dc.subject.keyword | analisis sentimen | id |
| dc.subject.keyword | fasttext word embedding | id |
| dc.subject.keyword | gated recurrent unit | id |
| dc.subject.keyword | trailer film | id |
| dc.subject.keyword | youtube | id |
| Appears in Collections: | UT - Computer Science | |
Files in This Item:
| File | Description | Size | Format | |
|---|---|---|---|---|
| cover_G6401201087_a34597afafac4fcb9f8aacf05e1d8973.pdf | Cover | 389.39 kB | Adobe PDF | View/Open |
| fulltext_G6401201087_16a023c05900417fac50882460f5b6ab.pdf Restricted Access | Fulltext | 2.22 MB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.