Please use this identifier to cite or link to this item: http://repository.ipb.ac.id/handle/123456789/150461
Title: Produktivitas Primer Bersih, Laju Dekomposisi, dan Pelepasan Unsur Hara Serasah Daun Avicennia marina di Kawasan Mangrove Hutan Lindung Angke Kapuk, Jakarta
Authors: Kusmana, Cecep
Budi, Sri Wilarso
Sukarno, Nampiah
Rumondang, Amandita Lintang
Issue Date: 14-May-2024
Publisher: IPB University
Citation: Akram H, Hussain S, Mazumdar P, Chua KO, Butt TE, Harikrishna JA. 2023. Mangrove Health: A Review of Functions, Threats, and Challenges Associated with Mangrove Management Practices. Forests. 14(9):1–38.doi:10.3390/f14091698. Alam MI, Ahsan MN, Debrot AO, Verdegem MCJ. 2021. Nutrients and anti-nutrients in leaf litter of four selected mangrove species from the Sundarbans, Bangladesh and their effect on shrimp (Penaeus monodon, Fabricius, 1798) post larvae. Aquaculture. 542(November 2020):736865.doi:10.1016/j.aquaculture.2021.736865. Alongi DM. 2014. Carbon Cycling and Storage in Mangrove Forests. .doi:10.1146/annurev-marine-010213-135020. Alongi DM. 2020. Carbon cycling in the world’s mangrove ecosystems revisited: Significance of non-steady state diagenesis and subsurface linkages between the forest floor and the coastal ocean. Forests. 11(9).doi:10.3390/f11090977. Ananda K. 2004. Diversity of filamentous fungi on decomposing leaf and woody litter of mangrove forests in the southwest coast of India. Curr. Sci. 87(10):1431–1437. Ariyanto D, Bengen DG, Prartono T, Wardiatno Y. 2018. Short Communication: The relationship between content of particular metabolites of fallen mangrove leaves and the rate at which the leaves decompose over time. Biodiversitas. 19(3):700–705.doi:10.13057/biodiv/d190304. Azad MS, Kamruzzaman M, Paul SK, Kanzaki M. 2020. Litterfall release, vegetative, and reproductive phenology investigation of Heritiera fomes Buch-Ham in the Sundarbans mangrove forests, Bangladesh: relationship with environmental variables. Forest Sci. Technol. 16(3):105–115.doi:10.1080/21580103.2020.1786470. Baldrian P, Kolaiřík M, Štursová M, Kopecký J, Valášková V, Větrovský T, Žifčáková L, Šnajdr J, Rídl J, Vlček Č, et al. 2012. Active and total microbial communities in forest soil are largely different and highly stratified during decomposition. ISME J. 6(2):248–258.doi:10.1038/ismej.2011.95. Barnett HL, Hunter BB. 1998. Illustrated Genera of Imperfect Fungi 4th Edition. :218. Barton LL, Northub DE. 2011. Microbial Ecology. New Jersey (US): John Wiley and Sons, Inc. Beck MW, Heck N, Narayan S, Menéndez P, Reguero BG, Bitterwolf S, Torres-Ortega S, Lange GM, Pfliegner K, Pietsch McNulty V, et al. 2022. Return on investment for mangrove and reef flood protection. Ecosyst. Serv. 56(May).doi:10.1016/j.ecoser.2022.101440. Berg B. 2014. Decomposition patterns for foliar litter - A theory for influencing factors. Soil Biol. Biochem. 78:222–232.doi:10.1016/j.soilbio.2014.08.005. Bissett J. 1991. A revision of the genus Trichoderma . II. Infrageneric classification . Can. J. Bot. 69(11):2357–2372.doi:10.1139/b91-297. Bohara M, Acharya K, Perveen S, Manevski K, Hu C, Yadav RKP, Shrestha K, Li X. 2020. In situ litter decomposition and nutrient release from forest trees along an elevation gradient in Central Himalaya. Catena. 194(May):104698.doi:10.1016/j.catena.2020.104698. Budiadi B, Widiyatno W, Nurjanto HH, Hasani H, Jihad AN. 2022. Seedling Growth and Quality of Avicennia marina (Forssk.) Vierh. under Growth Media Composition and Controlled Salinity in an Ex Situ Nursery. Forests. 13(5).doi:10.3390/f13050684. Bunting P, Rosenqvist A, Hilarides L, Lucas RM, Thomas N, Tadono T, Worthington TA, Spalding M, Murray NJ. 2022. Global Mangrove Extent Change 1996 – 2020: Global Mangrove. Remote Sens. 14(3657):1–32. Burlacu A, Cornea CP, Israel-Roming F. 2016. Screening of Xylanase Producing Microorganisms. Res. J. Agric. Sci. 48(2):8–15. Chen J. 2020. Fate of leaf litter in restored Kandelia obovata (S. L.) mangrove forests with different ages in Jiulong River Estuary, China. Restor. Ecol. 28(2):369–377.doi:10.1111/rec.13079. Chen Z, Chen X, Wang C, Li C. 2020. Foliar Cellulose and Lignin Degradation of Two Dominant Tree Species in a Riparian Zone of the Three Gorges Dam Reservoir, China. Front. Plant Sci. 11(December):1–10.doi:10.3389/fpls.2020.569871. Cheng H, Inyang A, Li C Da, Fei J, Zhou YW, Wang YS. 2020. Salt tolerance and exclusion in the mangrove plant Avicennia marina in relation to root apoplastic barriers. Ecotoxicology. 29(6):676–683.doi:10.1007/s10646-020-02203-6. Chowdhury S, Li B, Wolfe ER, Likar M, Martin PL, Yan J, Miao Y, Bello A, Pollierer MM, Jongen R, et al. 2019. Interactive effects of dissolved nitrogen, phosphorus and litter chemistry on stream fungal decomposers. Soil Biol. Biochem. 8(1):172–183.doi:10.1093/femsec/fiy151. Clark DA, Brown S, Kicklighter DW, Chambers JQ, Thomlinson JR, Ni J. 2001. Measuring net primary production in forests: Concepts and field methods. Ecol. Appl. 11(2):356–370.doi:10.1890/1051-0761(2001)011[0356:MNPPIF]2.0.CO;2. Cotrufo MF, Del Galdo I, Piermatteo D. 2010. Litter decomposition: Concepts, methods and future perspectives. Soil Carbon Dyn. An Integr. Methodol.:76–90.doi:10.1017/CBO9780511711794.006. Cuenca GC, Macusi ED, Abreo NAS, Ranara CT, Andam MB, Cardona LC, Conserva GG. 2015. Mangrove Ecosystems and Associated Fauna with Special Reference to Mangrove Crabs in the Philippines: A Review. Volume ke-15. Dix NJ, Webster J. 1995. Fungal Ecology. Dordrecht (NL) : Springer. Donato DC, Kauffman JB, Murdiyarso D, Kurnianto S, Stidham M, Kanninen M. 2011. Mangroves among the most carbon-rich forests in the tropics. Nat. Geosci. 4(5):293–297.doi:10.1038/ngeo1123. Duarte CM. 2017. Reviews and syntheses: Hidden forests, the role of vegetated coastal habitats in the ocean carbon budget. Biogeosciences. 14(2):301–310.doi:10.5194/bg-14-301-2017. Elsababty Z. 2015. Cellulolytic and Pectinolytic Enzymes of Some Selected Heat Resistant Fungi. J. Microbiol. Exp. 2(2):66–69.doi:10.15406/jmen.2015.02.00042. Fernando ES 1998. Forest formations and flora of the Philippines:Handout in FBS 21. (unpublished) Field CD. 1995. Impacts of expected climate change on mangroves. Hydrobiologia 295:75-81. Fromard F, Puig H, Mougin E, Marty G, Betoulle JL, Cadamuro L. 1998. Structure, above-ground biomass and dynamics of mangrove ecosystems: New data from French Guiana. Oecologia. 115: 39–53. Furtado J. 1966. connection in the Basidiomycetes. Persoonia Mol. Phylogeny Evol. Fungi. 4(2):125–144. Gams W, Bissett J. 2002. Morphology and identification of Trichoderma. Di dalam: Kubicek CP, Harman GE, editor. Trichoderma and Gliocladium Volume 1: Basic Biologi, Taxonomy, and Genetic.London (UK): Taylor and Francis Ltd. Giweta M. 2020. Role of litter production and its decomposition, and factors affecting the processes in a tropical forest ecosystem: A review. J. Ecol. Environ. 44(1):1–9.doi:10.1186/s41610-020-0151-2. Gnanamoorthy P, Selvam V, Deb Burman PK, Chakraborty S, Karipot A, Nagarajan R, Ramasubramanian R, Song Q, Zhang Y, Grace J. 2020. Seasonal variations of net ecosystem (CO2) exchange in the Indian tropical mangrove forest of Pichavaram. Estuar. Coast. Shelf Sci. 243(May):106828.doi:10.1016/j.ecss.2020.106828. Graça MAS, Ferreira V, Canhoto C, Encalada AC, Guerrero-Bolaño F, Wantzen KM, Boyero L. 2015. A conceptual model of litter breakdown in low order streams. Int. Rev. Hydrobiol. 100(1):1–12.doi:10.1002/iroh.201401757. Gu X, Zhao H, Peng C, Guo X, Lin Q, Yang Q, Chen L. 2022. The mangrove blue carbon sink potential: Evidence from three net primary production assessment methods. For. Ecol. Manage. 504(August 2021):119848.doi:10.1016/j.foreco.2021.119848. Han MY, Zhang LX, Fan CH, Liu LH, Zhang LS, Li BZ, Alva AK. 2011. Release of nitrogen, phosphorus, and potassium during the decomposition of apple (Malus domestica) leaf litter under different fertilization regimes in Loess Plateau, China. Soil Sci. Plant Nutr. 57(4):549–557.doi:10.1080/00380768.2011.593481. Hanh NTH, Tinh PH, Tuan MS. 2016. Allometry and Biomass Accounting for Mangroves Kandelia Obovata Sheue, Lui & Young and Sonneratia Caseolaris, Engler Planted in Coastal Zone of Red River Delta Vietnam. Int. J. Dev. Res. 6(5):7804–7808. Hidayah BN, Herawati N, Aisah AR, Utami NR. 2021. Diversity of fungi associated with rhizosphere of healthy and diseased garlic crop. Biodiversitas. 22(3):1433–1440.doi:10.13057/BIODIV/D220346. Holden SR, Gutierrez A, Treseder KK. 2013. Changes in Soil Fungal Communities, Extracellular Enzyme Activities, and Litter Decomposition Across a Fire Chronosequence in Alaskan Boreal Forests. Ecosystems. 16(1):34–46.doi:10.1007/s10021-012-9594-3. Hoque MM, Kamal AHM, Idris MH, Ahmed OH, Hoque ATMR, Billah MM. 2015. Litterfall production in a tropical mangrove of Sarawak, Malaysia. Zool. Ecol. 25(2):157–165.doi:10.1080/21658005.2015.1016758. Hossain M, Siddique MRH, Abdullah SMR, Saha S, Ghosh DC, Rahman MS, Limon SH. 2014. Nutrient dynamics associated with leaching and microbial decomposition of four abundant mangrove species leaf litter of the sundarbans, bangladesh. Wetlands. 34(3):439–448.doi:10.1007/s13157-013-0510-1. Hurst JM, Allen RB. 2007. A Permanent plot method. Book.:68. Jerry S. Olson. 1963. Energy Storage and the Balance of Producers and Decomposers in Ecological Systems Author ( s ): Jerry S . Olson Reviewed work ( s ): Published by : Ecological Society of America Stable URL : http://www.jstor.org/stable/1932179 . Ecol. Soc. Am. 44(2):322–331. Juottonen H. 2021. Integrating Decomposers, Methane-Cycling Microbes and Ecosystem Carbon Fluxes Along a Peatland Successional Gradient in a Land Uplift Region. Ecosystems..doi:10.1007/s10021-021-00713-w. Kamara M, Kamruzzaman M. 2021. Effects of Thinning on Aboveground Net Primary Productivity in Overcrowded Mangrove Kandelia obovata Stands. J. Coast. Res. 37(1):75–81.doi:10.2112/JCOASTRES-D-20-00025.1. Kamruzzaman M, Ahmed S, Osawa A. 2017. Biomass and net primary productivity of mangrove communities along the Oligohaline zone of Sundarbans, Bangladesh. For. Ecosyst. 4(1).doi:10.1186/s40663-017-0104-0. Kamruzzaman M, Basak K, Paul SK, Ahmed S, Osawa A. 2019a. Litterfall production, decomposition and nutrient accumulation in Sundarbans mangrove forests, Bangladesh. Forest Sci. Technol. 15(1):24–32.doi:10.1080/21580103.2018.1557566. Kamruzzaman M, Mouctar K, Sharma S, Osawa A. 2019b. Comparison of biomass and net primary productivity among three species in a subtropical mangrove forest at Manko Wetland, Okinawa, Japan. Reg. Stud. Mar. Sci. 25:100475.doi:10.1016/j.rsma.2018.100475. Kamruzzaman M, Osawa A, Deshar R, Sharma S, Mouctar K. 2017. Species composition, biomass, and net primary productivity of mangrove forest in Okukubi River, Okinawa Island, Japan. Reg. Stud. Mar. Sci. 12:19–27.doi:10.1016/j.rsma.2017.03.004. Kantharajan G, Pandey PK, Krishnan P, Bharti VS, Samuel VD. 2018. Plastics: A menace to the mangrove ecosystems of megacity Mumbai, India. ISME/GLOMIS Electron. J. . 16(1):1–5. Kaur A, Phutela UG. 2016. Isolation and Qualitative Selection of Fungi for Production of Lignocellulolytic Enzymes. Int. J. Curr. Microbiol. Appl. Sci. 5(6):718–730.doi:10.20546/ijcmas.2016.506.078. Kihia CM. 2014. Impact of Human Physical Disturbance on Mangrove Forest Structure at the Gazi Bay , Kenya. Egert. J. Sci. Technol. 14(2073):31–47. Kira T, Shidei T. 1967. PRODUCTION ECOSYSTEMS- ・ OF IN of the International Biological out Japan. Japanese J. Ecol. 17(2):70–87. Komiyama A, Ong JE, Poungparn S. 2008. Allometry, biomass, and productivity of mangrove forests: A review. Aquat. Bot. 89(2):128–137.doi:10.1016/j.aquabot.2007.12.006. Komiyama A, Poungparn S, Kato S. 2005. Common allometric equations for estimating the tree weight of mangroves. J. Trop. Ecol. 21(4):471–477.doi:10.1017/S0266467405002476. Krishna MP, Mohan M. 2017. Litter decomposition in forest ecosystems: a review. Energy, Ecol. Environ. 2(4):236–249.doi:10.1007/s40974-017-0064-9. Kristensen E. 2001. Impact of polychaetes (Nereis spp. and Arenicola marina) on carbon biogeochemistry in coastal marine sediments. Geochem. Trans. 2:92–103.doi:10.1039/b108114d. Kristensen E. 2017. Biogeochemical cycles: Global approaches and perspectives. Mangrove Ecosyst. A Glob. Biogeogr. Perspect. Struct. Funct. Serv.:163–209.doi:10.1007/978-3-319-62206-4_6. Kurian CV. 1984. Fauna of the mangrove swamps in Cochin estuary. Di dalam: Soepadimo E. Rao AN. Macintosh DJ, editor. Proceedings of the Asian Symposium on the Mangrove Environment. Res Manag. University of Malaya. Kuala Lumpar. Malaysia. Kusmana C, Wilarso S, Iwan H, Pamoengkas P, Wibowo C. Tiryana T, Triswanto A, Yunasfi, Hamzah. 2005. Teknik Rehabilitasi Mangrove. Bogor (ID): Fakultas Kehutanan Institut Pertanian Bogor. Kyaschenko J, Clemmensen KE, Hagenbo A, Karltun E, Lindahl BD. 2017. Shift in fungal communities and associated enzyme activities along an age gradient of managed Pinus sylvestris stands. ISME J. 11(4):863–874.doi:10.1038/ismej.2016.184. Li J, Lu J, Li X, Ren T, Cong R, Zhou L. 2014. Dynamics of potassium release and adsorption on rice straw residue. PLoS One. 9(2):1–9.doi:10.1371/journal.pone.0090440. Li SB, Chen PH, Huang JS, Hsueh ML, Hsieh LY, Lee CL, Lin HJ. 2018. Factors regulating carbon sinks in mangrove ecosystems. Volume ke-24. Li T, Ye Y. 2014. Dynamics of decomposition and nutrient release of leaf litter in Kandelia obovata mangrove forests with different ages in Jiulongjiang Estuary, China. Ecol. Eng. 73:454–460.doi:10.1016/j.ecoleng.2014.09.102. Lima RG, Colpo KD. 2014. Leaf-litter decomposition of the mangrove species Avicennia schaueriana, Laguncularia racemosa and Rhizophora mangle. J. Mar. Biol. Assoc. United Kingdom. 94(2):233–239.doi:10.1017/S0025315413001574. Liu J, Lai DYF. 2019. Subtropical mangrove wetland is a stronger carbon dioxide sink in the dry than wet seasons. Agric. For. Meteorol. 278(June):107644.doi:10.1016/j.agrformet.2019.107644. Loría-Naranjo M, Sibaja-Cordero JA, Cortés J. 2019. Mangrove Leaf Litter Decomposition in a Seasonal Tropical Environment. J. Coast. Res. 35(1):122–129.doi:10.2112/JCOASTRES-D-17-00095.1. Makhlouf J, Carvajal-Campos A, Querin A, Tadrist S, Puel O, Lorber S, Oswald IP, Hamze M, Bailly JD, Bailly S. 2019. Morphologic, molecular and metabolic characterization of Aspergillus section Flavi in spices marketed in Lebanon. Sci. Rep. 9(1):1–11.doi:10.1038/s41598-019-41704-1. Mangaravite JCS, Passos RR, Andrade FV, da Silva VM, Marin EB, de Sá Mendonça E. 2023. Decomposition and release of nutrients from species of tropical green manure. Rev. Ceres. 70(3):114–124.doi:10.1590/0034-737X202370030012. Maranò S, Reller C, Loeliger HA, Fäh D. 2012. Seismic waves estimation and wavefield decomposition: Application to ambient vibrations. Geophys. J. Int. 191(1):175–188.doi:10.1111/j.1365-246X.2012.05593.x. Marisa H, Sarno. 2015. Three Species Zonation of Sonneratia ; Based on. :100–101. Marjenah, Putri NP. 2017. Morphological characteristic and physical environment of Terminalia catappa in East Kalimantan , Indonesia. ASIAN J. For. 1(1):33–39.doi:10.13057/asianjfor/r010105. Moitinho MA, Bononi L, Souza DT, Melo IS, Taketani RG. 2018. Bacterial Succession Decreases Network Complexity During Plant Material Decomposition in Mangroves. Microb. Ecol. 76(4):954–963.doi:10.1007/s00248-018-1190-4. Moitinho MA, Chiaramonte JB, Bononi L, Gumiere T, Melo IS, Taketani RG. 2022a. Fungal succession on the decomposition of three plant species from a Brazilian mangrove. Sci. Rep. 12(1):1–10.doi:10.1038/s41598-022-18667-x. Moitinho MA, Chiaramonte JB, Bononi L, Gumiere T, Melo IS, Taketani RG. 2022b. Fungal succession on the decomposition of three plant species from a Brazilian mangrove. Sci. Rep. 12(1):1–25.doi:10.1038/s41598-022-18667-x. Moore-Landecker E. 1972. Fundamentals of the Fungi. Englewood Cliffs (US): Prentice-Hall Inc. Moreno-Gavíra A, Huertas V, Diánez F, Santos M, Sánchez-Montesinos B. 2020. Paecilomyces and its importance in the biological control of agricultural pests and diseases. Plants. 9(12):1–28.doi:10.3390/plants9121746. Muliawan RE, Prartono T, Bengen DG. 2020. Productivity and decomposition rate of Rhizophora mucronata and Avicennia alba litter based on environment characteristics in Muara Gembong. IOP Conf. Ser. Earth Environ. Sci. 429(1).doi:10.1088/1755-1315/429/1/012057. MURTAFI’AH N. 2022. Identification Aspergillus sp on mung beans at Andir Market, Bandung City. J. Kesehat. Rajawali. 12(1):1–4.doi:10.54350/jkr.v12i1.132. Nordhaus I, Salewski T, Jennerjahn TC. 2017. Interspecific variations in mangrove leaf litter decomposition are related to labile nitrogenous compounds. Estuar. Coast. Shelf Sci. 192:137–148.doi:10.1016/j.ecss.2017.04.029. Numbere AO, Camilo GR. 2017. Mangrove leaf litter decomposition under mangrove forest stands with different levels of pollution in the Niger River Delta, Nigeria. Afr. J. Ecol. 55(2):162–167.doi:10.1111/aje.12335. Ogawa Y, Sadaba RB, Kanzaki M. 2022. Stand structure, biomass, and net primary productivity of planted and natural mangrove forests in Batan Bay Estuary, Philippines. Tropics. 31(1):1–9.doi:10.3759/tropics.MS21-13. Ogbonna DN. 2011. Tropical Mangrove Leaf Litter Microbes Around Port Harcourt, Nigeria. J. Agric. Biol. Sci. 2(3):59–64. Ohtsuka T, Tomotsune M, Suchewaboripont V, Iimura Y, Kida M, Yoshitake S, Kondo M, Kinjo K. 2019. Stand dynamics and aboveground net primary productivity of a mature subtropical mangrove forest on Ishigaki Island, south-western Japan. Reg. Stud. Mar. Sci. 27:100516.doi:10.1016/j.rsma.2019.100516. Osono T. 2017. Leaf litter decomposition of 12 tree species in a subtropical forest in Japan. Ecol. Res. 32(3):413–422.doi:10.1007/s11284-017-1449-0. Osono T. 2018. Environmental change and fungal communities: From the tropics to polar region. Japanese J. Ecol. 68(3):149–168.doi:10.18960/seitai.68.3_149. Ouyang X, Lee SY, Connolly RM. 2017. The role of root decomposition in global mangrove and saltmarsh carbon budgets. Earth-Science Rev. 166:53–63.doi:10.1016/j.earscirev.2017.01.004. Oyedeji S, Agboola OO, Animasaun DA, Ogunkunle CO, Fatoba PO. 2021. Organic carbon, nitrogen and phosphorus enrichment potentials from litter fall in selected greenbelt species during a seasonal transition in Nigeria’s savanna. Trop. Ecol. 62(4):580–588.doi:10.1007/s42965-021-00172-3. Palm CA, Sanchez PA. 1990. Decomposition and Nutrient Release Patterns of the Leaves of Three Tropical Legumes. Biotropica. 22(4):330.doi:10.2307/2388550. Park SW, Nguyen TTT, Lee HB. 2011. Mycobiology Characterization of Two Species of Acremonium ( Unrecorded in Korea ) from Soil Samples : A . variecolor and A . persicinum. :13–16. Park SW, Nguyen TTT, Lee HB. 2017. Characterization of two species of Acremonium (unrecorded in Korea) from soil samples: A. variecolor and A. persicinumw. Mycobiology. 45(4):353–361.doi:10.5941/MYCO.2017.45.4.353. Parton W, Silver WL, Burke IC, Grassens L, Harmon ME, Currie WS, King JY, Adair EC, Brandt LA, Hart SC, et al. 2007. Global-scale similarities in nitrogen release patterns during long-term decomposition. Science (80-. ). 315(5810):361–364.doi:10.1126/science.1134853. Paulus B, Gadek P, Hyde KD. 2003. Estimation of microfungal diversity in tropical rainforest leaf litter using particle filtration: The effects of leaf storage and surface treatment. Mycol. Res. 107(6):748–756.doi:10.1017/S0953756203007913. Peng Y, Zhao L, Wu M, Yu X, Sun H, Chen Z, He Z. 2023. Additional N Input May Alter the Species-Specific Blue Carbon Cycling Differently in Mangroves. Ecosyst. Heal. Sustain. 9:1–10.doi:10.34133/ehs.0042. Perdomo H, Sutton DA, García D, Fothergill AW, Cano J, Gené J, Summerbell RC, Rinaldi MG, Guarro J. 2011. Spectrum of clinically relevant Acremonium species in the United States. J. Clin. Microbiol. 49(1):243–256.doi:10.1128/JCM.00793-10. Piza PA, Suárez JC, Andrade HJ. 2021. Litter decomposition and nutrient release in different land use located in Valle del Cauca (Colombia). Agrofor. Syst. 95(2):257–267.doi:10.1007/s10457-020-00583-6. Poungparn S, Komiyama A, Umnouysin S, Rodtassana C, Sangtiean T, Maknual C, Pravinvongvuthi T, Suchewaboripont V, Kato S. 2020. Ten-year estimation of net primary productivity in a mangrove forest under a tropical monsoon climate in Eastern Thailand: Significance of the temperature environment in the dry season. Forests. 11(9).doi:10.3390/f11090987. Prakash CP, Thirumalai E, Govinda Rajulu MB, Thirunavukkarasu N, Suryanarayanan TS. 2015. Ecology and diversity of leaf litter fungi during early-stage decomposition in a seasonally dry tropical forest. Fungal Ecol. 17:103–113.doi:10.1016/j.funeco.2015.05.004. Promputtha I, McKenzie EHC, Tennakoon DS, Lumyong S, Hyde KD. 2017. Succession and Natural Occurrence of Saprobic Fungi on Leaves of Magnolia liliifera in a Tropical Forest. Cryptogam. Mycol. 38(2):213–225.doi:10.7872/crym/v38.iss2.2017.213. Purahong W. 2016. Life in leaf litter: novel insights into community dynamics of bacteria and fungi during litter decomposition. Mol. Ecol. 25(16):4059–4074.doi:10.1111/mec.13739. Purnobasuki H, Sarno, Hermawan A. 2022. Litter Fall and Decomposition of Mangrove Species Avicennia Marina in Surabaya East Coast, Indonesia. Pakistan J. Bot. 54(4):1399–1403.doi:10.30848/PJB2022-4(45). Rafael A, Calumpong HP. 2018. Comparison of litter production between natural and reforested mangrove areas in central philippines. AACL Bioflux. 11(4):1399–1414. Raghukumar S. 2017. Fungi in coastal and oceanic marine ecosystems: Marine fungi. Rajendran N, Kathiresan K. 2007. Microbial flora associated with submerged mangrove leaf litter in India. Rev. Biol. Trop. 55(2):393–400.doi:10.15517/rbt.v55i2.6019. Rani V, Bijoy Nandan S, Schwing PT. 2021. Carbon source characterisation and historical carbon burial in three mangrove ecosystems on the South West coast of India. Catena. 197(June 2020):104980.doi:10.1016/j.catena.2020.104980. Robertson AI, Dixon P, Daniel PA, Zagorskis I. 2020. Primary production in forests of the mangrove palm Nypa fruticans. Aquat. Bot. 167(May):103288.doi:10.1016/j.aquabot.2020.103288. Rodda SR, Thumaty KC, Fararoda R, Jha CS, Dadhwal VK. 2022. Unique characteristics of ecosystem CO2 exchange in Sundarban mangrove forest and their relationship with environmental factors. Estuar. Coast. Shelf Sci. 267(August 2021):107764.doi:10.1016/j.ecss.2022.107764. Romani AM, Fischer H, Mille-Lindblom C, Tranvik LJ. 2006. Interactions of bacteria and fungi on decomposing litter : differential extracellular enzyme activities. Ecology. 87(10):2559–2569. Rumondang AL, Kusmana C, Budi SW. 2021. Species composition and structure of angke kapuk mangrove protected forest, Jakarta, Indonesia. Biodiversitas. 22(9):3863–3871.doi:10.13057/biodiv/d220932. Rumondang AL, Kusmana C, Wilarso SRI, Sukarno N. Mangrove litter-fall productivity in the all-high tides area of Angke Kapuk Protected Forest , Jakarta. 3:1742–1754.doi:10.17605/OSF.IO/VNG57. Saline Agriculture Worldwide. 2024. Classification of Saline Water: Global Classification of Water Based On The Salinity. [internet]. Tersedia di: https://www.salineagricultureworldwide.com/classification-of-saline-water Sandilyan S, Kathiresan K. 2012. Mangrove conservation: A global perspective. Biodivers. Conserv. 21(14):3523–3542.doi:10.1007/s10531-012-0388-x. Sasongko DA, Kusmana C, Ramadan H. 2014. Management Strategy of Angke Kapuk Protected Forest. J. Nat. Resour. Environ. Manag. 4(1):35–42.doi:10.19081/jpsl.2014.4.1.35. Seelan JSS, Ali AAKF, Muid S. 2009. Aspergillus species isolated from mangrove forests in Borneo Island, Sarawak, Malaysia. J. Threat. Taxa. 1(6):344–346.doi:10.11609/jott.o2192.344-6. Selvi KV, Sivakumar T. 2013. Original Research Article Isolation , identification and Characterization of Fusarium species from mangrove habitat of Pichavaram , Tamil Nadu , India. 2(1):33–49. Silva DM, Batista LR, Rezende EF, Fungaro MHP, Sartori D, Alves E. 2011. Identification of fungi pg the genus Aspergillus section Nigri using polyphasic. Brazilian Journal of Microbiology 42: 761-773. doi: 10.1590/S1517-838220110002000044 Simões MF, Antunes A, Ottoni CA, Amini MS, Alam I, Alzubaidy H, Mokhtar NA, Archer JAC, Bajic VB. 2015. Soil and Rhizosphere Associated Fungi in Gray Mangroves (Avicennia marina) from the Red Sea - A Metagenomic Approach. Genomics, Proteomics Bioinforma. 13(5):310–320.doi:10.1016/j.gpb.2015.07.002. Simpson LT, Cherry JA, Smith RS, Feller IC. 2021. Mangrove Encroachment Alters Decomposition Rate in Saltmarsh Through Changes in Litter Quality. Ecosystems. 24(4):840–854.doi:10.1007/s10021-020-00554-z. Snedaker SC. 1978. Mangroves: their value and perpetution. Nature and Resources 14: 6-13. Van Soest PJ, Wine RH. 1968. Determination of Lignin and Cellulose in Acid-Detergent Fiber with Permanganate. J. AOAC Int. 51(4):780–785.doi:10.1093/jaoac/51.4.780. Sebastianes FL, Romão-Dumaresq AS, Lacava PT, Harakava R, Azevedo JL, De Melo IS, Pizzirani-Kleiner AA. 2013. Species diversity of culturable endophytic fungi from Brazilian mangrove forests. Curr. Genet. 59(3):153–166.doi:10.1007/s00294-013-0396-8. Sridhar KR, Maria GL. 2006. Fungal diversity on mangrove woody litter Rhizophora mucronata (Rhizopḩoraceae). Indian J. Mar. Sci. 35(4):318–325. Sumarga E, Sholihah A, Srigati FAE, Nabila S, Azzahra PR, Rabbani NP. 2023. Quantification of Ecosystem Services from Urban Mangrove Forest: A Case Study in Angke Kapuk Jakarta. Forests. 14(9):1–13.doi:10.3390/f14091796. Taillardat P, Friess DA, Lupascu M. 2018. Mangrove blue carbon strategies for climate change mitigation are most effective at the national scale. Biol. Lett. 14(10).doi:10.1098/rsbl.2018.0251. Tandio T, Kusmana C, Fauzi A, Hilmi E. 2023. Identification of Key Actors in Mangroves Plantation using the MACTOR Tool: Study in DKI Jakarta. J. Sylva Lestari. 11(1):163–176.doi:10.23960/jsl.v11i1.593. Tennakoon DS, Gentekaki E, Jeewon R, Kuo CH, Promputtha I, Hyde KD. 2021. Life in leaf litter: Fungal community succession during decomposition. Mycosphere. 12(1):406–429.doi:10.5943/mycosphere/12/1/5. Trianto A, Radjasa OK, Subagiyo, Purnaweni H, Bahry MS, Djamaludin R, Tjoa A, Singleton I, Diele K, Evan D. 2021. Potential of fungi isolated from a mangrove ecosystem in northern sulawesi, indonesia: Protease, cellulase and anti-microbial capabilities. Biodiversitas. 22(4):1717–1724. doi:10.13057/biodiv/d220415. Tusneem ME. 1971. LSU Scholarly Repository Nitrogen transformations in waterlogged soil. Twilley RR, Castañeda-Moya E, Rivera-Monroy VH, Rovai A. 2017. Productivity and carbon dynamics in mangrove wetlands. Tzec-Gamboa M del C, Álvarez-Rivera OO, Ramírez y Avilés L, Solorio-Sánchez FJ. 2023. Decomposition and Nitrogen Release Rates of Foliar Litter from Single and Mixed Agroforestry Species under Field Conditions. Agric. 13(1).doi:10.3390/agriculture13010222. Valencia PE, Meitiniarti VI. 2017. Isolasi Dan Karakterisasi Jamur Ligninolitik Serta Perbandingan Kemampuannya Dalam Biodelignifikasi. Scr. Biol. 4(3):171.doi:10.20884/1.sb.2017.4.3.449. Varga J, Frisvad JC, Samson RA. 2011. Two ner aflatoxin producing species, and an overview of Aspergillus section Flavi. Studies in Mycology 69: 57-80. doi:10.3114/sim.2011.69.05 Veen GF (Ciska., Snoek BL, Bakx-Schotman T, Wardle DA, van der Putten WH. 2019. Relationships between fungal community composition in decomposing leaf litter and home-field advantage effects. Funct. Ecol. 33(8):1524–1535.doi:10.1111/1365-2435.13351. Vinh T Van, Allenbach M, Linh KTV, Marchand C. 2020. Changes in Leaf Litter Quality During Its Decomposition in a Tropical Planted Mangrove Forest (Can Gio, Vietnam). Front. Environ. Sci. 8(February):1–15.doi:10.3389/fenvs.2020.00010. Voriskova J, Baldrian P. 2013. Fungal community on decomposing leaf litter undergoes rapid successional changes. ISME J. 7(3):477–486.doi:10.1038/ismej.2012.116. Wang Y, Yang X, Li Y, Wang B, Shi T. 2023. The Genus Chrysosporium: A Potential Producer of Natural Products. Fermentation. 9(1).doi:10.3390/fermentation9010076. Wibowo ES, Palupi ES, Puspitasari IGAAR, Atang. 2019. Metabolism and Nutritional Content of Polychaeta Nereis sp. with Maintenance Salinity and Different Types of Feed. Ilmu Kelaut. Indones. J. Mar. Sci. 24(3):113–120.doi:10.14710/ik.ijms.24.3.113-120. Wibowo ES, Puspitasari IGAR, Palupi ES, Atang. 2020. The Potential of Nereis sp. (Polychaete) as Prawn Feed at the Coastal Farming of Jeruklegi, Cilacap. IOP Conf. Ser. Earth Environ. Sci. 550(1).doi:10.1088/1755-1315/550/1/012030. Wongprom J, Poolsiri R, DilokSumpun S, Ngernsaengsaruay C, Tansakul S, Chandaeng W. 2022. Litterfall, Litter Decomposition and Nutrient Return of Rehabilitated Mining Areas and Natural Forest in Phangnga Forestry Research Station, Southern Thailand. Biotropia (Bogor). 29(1):74–85.doi:10.11598/btb.2022.29.1.1627. Yin P, Yin M, Cai Z, Wu G, Lin G, Zhou J. 2018. Structural inflexibility of the rhizosphere microbiome in mangrove plant Kandelia obovata under elevated CO2. Mar. Environ. Res. 140(July):422–432. doi:10.1016/j.marenvres.2018.07.013. Yunasfi. 2021. Application of different various species of fungi to increase growth of Avicennia marina 300 m from the coastline in Belawan and Pulau Sembilan. IOP Conf. Ser. Earth Environ. Sci. 713(1).doi:10.1088/1755-1315/713/1/012028. Ywih H, Ahmed OH, Muhamad N, Majid A. 2014. Improving Phosphorus Availability in an Acid Soil Using Organic Amendments Produced from Agroindustrial Wastes. 2014. Zhang H, Yuan W, Dong W, Liu S. 2014. Seasonal patterns of litterfall in forest ecosystem worldwide. Ecol. Complex. 20:240–247. doi:10.1016/j.ecocom.2014.01.003. Zhao YY, Li ZT, Xu T, Lou AR. 2022. Leaf litter decomposition characteristics and controlling factors across two contrasting forest types. J. Plant Ecol. 15(6):1285–1301.doi:10.1093/jpe/rtac073. Zulkifli NA, Zakaria L. 2017. Morphological and Molecular Diversity of Aspergillus From Corn Grain Used as Livestock Feed. HAYATI J. Biosci. 24(1):26–34.doi:10.1016/j.hjb.2017.05.002.
Series/Report no.: -;-
Abstract: Ekosistem mangrove sangat penting karena banyaknya fungsi ekologi dan ekonomi, serta memiliki peran sebagai mata rantai yang menghubungkan kehidupan ekosistem laut dengan ekosistem daratan. Mangrove dapat menyimpan karbon di tanah hampir lima kali lebih banyak dibandingkan dengan ekosistem hutan terestrial lainnya. Melalui produksi primernya, mangrove menopang kekayaan rantai makanan dan menjadi penyumbang nutrisi yang penting bagi produktivitas muara dan perairan pantai. Pelepasan unsur hara dan bahan organik dari serasah mangrove selama proses pencucian dan dekomposisi berperan penting dalam siklus biogeokimia ekosistem mangrove. Hutan Lindung Angke Kapuk merupakan salah satu kawasan hutan mangrove yang berada di pantai utara Jakarta dengan vegetasi yang didominasi oleh spesies mangrove api-api (Avicennia marina). Kawasan ini memiliki peran penting terutama dalam proteksi area daratan Jakarta. Tekanan terhadap konversi hutan mangrove sangat tinggi, terutama hutan mangrove perkotaan. Konversi berupa perluasan kawasan pemukiman, kawasan bisnis, dan budidaya perikanan. Penelitian ini dilakukan pada kawasan mangrove hutan lindung Angke Kapuk dari bulan Juli 2020 sampai dengan Desember 2023. Penelitian dilakukan dengan membuat plot permanen untuk pengamatan dan pengambilan sampel selama periode penelitian. Penelitian ini memiliki tujuan antara lain: (1) menduga biomassa di atas permukaan tanah dan produktivitas primer bersih (PPB) di ekosistem mangrove Hutan Lindung Angke Kapuk, (2) menduga laju dekomposisi serasah daun A. marina dan pelepasan hara selama masa dekomposisi di ekosistem mangrove Hutan Lindung Angke Kapuk, dan (3) mengidentifikasi spesies dan periodesasi okupasi cendawan berikut karakterisasinya yang berperan dalam dekomposisi serasah daun A. marina di ekosistem mangrove Hutan Lindung Angke Kapuk selama proses dekomposisi. Pada penelitian pendugaan biomassa di atas permukaan tanah (AGB) dan produktivitas primer bersih (PPB), dilakukan pada bulan Juli 2020 sampai dengan September 2022 menggunakan metode allometrik untuk menduga AGB dan metode penjumlahan untuk menduga PPB. Hasil pendugaan AGB pada tahun pertama (t1) sebesar 71,56 ton/ha, sedangkan pada tahun kedua sebesar 81,88 ton/ha. Hasil ini menunjukkan bahwa kenaikan biomassa selama dua tahun sebesar 10,32 ton atau sekitar 5,16 ton/ha/tahun. Adapun hasil pendugaan PPB yang dihasilkan dari hasil penjumlahan dari beberapa komponen, yaitu kenaikan biomassa, produktivitas serasah, dan tingkat penggembalaan herbivora, sebesar 14,47 ton/ha/tahun. Produktivitas serasah menjadi komponen penyumbang terbesar pada PPB di lokasi penelitian, yaitu sebesar 63,44% atau 9,18 ton/ha/tahun. Dekomposisi serasah mangrove, khususnya serasah daun, merupakan bagian utama dari proses siklus nutrisi yang memberikan kontribusi besar dalam regenerasi hara yang masuk ke dalam sedimen dan perairan sekitarnya. Dalam menduga laju dekomposisi serasah serta jumlah unsur hara mineral yang terlepas, dilakukan penelitian selama 120 hari. Penelitian dilakukan pada bulan September 2022 sampai dengan Januari 2023. Laju dekomposisi serasah diduga menggunakan nilai koefisien dekomposisi. Laju dekomposisi serasah daun A. marina pada kawasan mangrove Hutan Lindung Angke Kapuk adalah k=0,019. Proses dekomposisi serasah daun A. marina pada lokasi penelitian terdiri atas tiga proses yang saling berkaitan, yaitu proses penurunan kadar air dan pencucian, fragmentasi pemecahan serasah menjadi fragmen-fragmen kecil oleh cacing lumpur (Nareis sp.), dan proses katabolisme oleh mikroorganisme. Selama proses dekomposisi terjadi pelepasan unsur hara ke lingkungan ekosistem hutan mangrove, dan hasil rata-rata harian pelepasan hara antara lain karbon karbon (C) 49,916 gram/gram/hari, kalium (K) 1,646 gram/gram/hari, nitrogen (N) 1,425 gram/gram/hari, dan fosfor (P) 0,069 gram/gram/hari. Adapun nilai C:N pada akhir pengamatan dekomposisi sebesar 21,1. Kondisi pH dan kelembaban udara memiliki pengaruh yang signifikan terhadap jumlah nitrogen yang terlepas dan kandungan C:N pada sisa serasah daun yang terdekomposisi. Pengamatan suksesi cendawan dekomposer dilakukan dengan mengisolasi cendawan dari sisa serasah daun A. marina yang terdekomposisi. Metode isolasi dilakukan dengan dua metode, yaitu metode pencucian dan metode penyaringan. Untuk mengamati aktivitas enzim ekstraseluler yang dikeluarkan oleh cendawan dekomposer, dilakukan uji kualitatif menggunakan metode PDA selektif yang ditambahkan dengan CMC, xilan, dan asam tannin. Hasil isolasi ditemukan 7 genus, 4 isolat yang tidak bersporulasi atau miselia steril, dan 4 isolat yang belum teridentifikasi. Tujuh genus yang ditemukan meliputi Aspergillus, Acremonium, Chrysopsorium, Fusarium, Paecilomyses, Trichocladium, dan Trichoderma. Satu dari 4 isolat cendawan yang tidak bersporulasi atau miselia steril, memiliki struktur clamp connection, yaitu isolat miselia steril 2 dengan kode koloni IS-A19. Terdapat 2 isolat cendawan dari genus Aspergillus yang teridentifikasi sampai tingkat seksi spesies, yaitu Aspergillus seksi Nigri dan Aspergillus seksi Flavi, adapun cendawan dari genus Trichoderma teridentifikasi sebagai spesies Trichoderma harzianum. Nilai indeks keanekaragaman spesies cendawan mengalami perubahan selama masa dekomposisi serasah. Aktivitas enzim selulase ditemukan pada 32 dari 39 spesies cendawan yang ditemukan, sedangkan aktivitas enzim xilanase yang mendegradasi hemiselulosa ditemukan pada 34 dari 39 spesies cendawan yang ditemukan. Adapun untuk aktivitas enzim yang mendegradasi lignin hanya ditemukan pada 20 dari 39 spesies cendawan yang ditemukan. Salah satu cendawan yang mampu mendegradasi lignin adalah Aspergillus seksi Nigri dan T. harzanium. Keanekaragaman cendawan yang mengkolonisasi selama proses dekomposisi memiliki pengaruh terhadap jumlah pelepasan unsur hara karbon (C), nitrogen (N), fosfor (P), dan kalium (K). Selain itu cendawan juga memiliki pengaruh terhadap proses mineralisasi dan imobilisasi mineral selama proses dekomposisi.
Description: -
URI: http://repository.ipb.ac.id/handle/123456789/150461
Appears in Collections:DT - Forestry

Files in This Item:
File Description SizeFormat 
Cover - (E4601201004) AMANDITA LINTANG RUMONDANG.pdfCover402.89 kBAdobe PDFView/Open
Watermark - DISERTASI - (E4601201004) AMANDITA LINTANG RUMONDANG.pdf
  Restricted Access
Fulltext5.22 MBAdobe PDFView/Open
Watermark - Lampiran - (E4601201004) AMANDITA LINTANG RUMONDANG.pdf
  Restricted Access
Lampiran1.28 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.