Please use this identifier to cite or link to this item: http://repository.ipb.ac.id/handle/123456789/150310
Title: An Analysis and Design of Predictive Maintenance System Using Association Rule Mining in Moulding Machine PT X
Authors: Djatna, Taufik
Alitu. Imam Muharram
Issue Date: 2015
Publisher: IPB University
Abstract: One of the challenges in the implementation of Total Productive Maintenance (TPM) in the manufacturing industry is a slow managerial decision-making to respond the condition in the factory. This research investigates the answers of these challenges by analyzing and modeling the equipment condition and the response of actions required in a wooden door manufacturing industry. TPM implementation in this company has deployed the Overall Equipment Effectiveness (OEE) measurement as an indicator of the equipment @tilization and condition. Through an analysis and modeling of the OEE value obtained from the factory, the formulation of Association Rule Mining (ARM) aims to find a rule that shows the well computed relationship between measurable indicators of OEE with the response of action required to take in certain condition of machine utilization. Results obtained from ARM accelerate the decision to establish an appropriate TPM management Strategy based on the rules. The generated dynamic rules form and facilitate the process of decision-making by related stakeholders. Furthermore, relying on these rules the action taken by the company induced to a higher reliable and increasing the effectiveness of response and efficiency of time and costs.
URI: http://repository.ipb.ac.id/handle/123456789/150310
Appears in Collections:UT - Agroindustrial Technology

Files in This Item:
File SizeFormat 
F15ima.pdf
  Restricted Access
11.2 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.