Please use this identifier to cite or link to this item: http://repository.ipb.ac.id/handle/123456789/143301
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorIndrawati, Agustin-
dc.contributor.advisorMayasari, Ni Luh Putu Ika-
dc.contributor.authorArdiana-
dc.date.accessioned2024-03-25T06:53:28Z-
dc.date.available2024-03-25T06:53:28Z-
dc.date.issued2024-
dc.identifier.urihttp://repository.ipb.ac.id/handle/123456789/143301-
dc.description.abstractResistansi antimikrob atau Antimicrobial Resistance (AMR) saat ini menjadi masalah kesehatan global. Penggunaan antibiotik yang tidak tepat memicu keberadaan bakteri resistan, yang dapat menyebabkan penurunan kemampuan pengobatan antibiotik pada kejadian infeksi bakteri hingga kegagalan pengobatan. Bakteri Escherichia coli (E. coli) adalah bakteri Gram negatif yang bersifat komensal maupun patogen dan telah diketahui resistan pada beberapa jenis antibiotik. Resistansi antibiotik pada E. coli mengindikasikan adanya bakteri resistan di lingkungan dengan potensi penyebarannya. Disain penelitian ini merupakan penelitian eksploratif untuk mengidentifikasi pola resistansi dan gen penyandi resistansi antibiotik pada E. coli dari peternakan babi di Kabupaten Badung, Provinsi Bali, serta menganalisis hubungan kekerabatan bakteri E. coli resistan yang berasal dari hewan, manusia dan lingkungan. Pengambilan sampel dilakukan di 12 peternakan babi, terdiri dari 24 sampel feses babi, 24 sampel swab tangan pekerja kandang dan 12 sampel air limbah. Analisis laboratorium terdiri dari isolasi-identifikasi E. coli menggunakan media McConkey Agar dan uji biokimia IMViC, serta konfirmasi E. coli secara molekuler dengan Polymerase-Chain Reaction (PCR) deteksi gen uspA. Hasil E. coli positif selanjutnya diuji resistansi dengan metode Disk Diffusion Kirby-Bauer terhadap amoksisilin (AML), ampisilin (AMP), sefalotin (KF), seftriakson (CRO), sefotaksim (CTX), seftazidim (CAZ), siprofloksasin (CIP), kolistin sulfat (CT), eritromisin (E), streptomisin (S), tetrasiklin (TE), dan trimethoprim sulfametoksazol (SXT). Isolat E. coli resistan kemudian diuji deteksi E. coli penghasil ESBL dengan Modified Double Disk Sinergy Test (MDDST), diuji gen penyandi resistansi antibiotik dengan PCR, serta analisis kekerabatan isolat yang berasal dari hewan, manusia, dan lingkungan dengan sekuensing metode Sanger dan pohon filogenetik. Jumlah positif E. coli dari sampel feses 100% (24/24), air muara limbah 100% (12/12) dan swab tangan pekerja kandang 16,7% (4/24). Pola resistansi antibiotik menunjukkan pada semua isolat, resistansi tertinggi pada eritromisin, diikuti oleh amoksisillin dan ampisilin, tetrasiklin, streptomisin, trimethoprim sulfametoksazol Berdasarkan pola resistansi, sejumlah 14 isolat dikategorikan sebagai Multi Drug Resistance (MDR), yaitu resistan terhadap tiga atau lebih golongan antibiotik. Gen resistansi yang terdeteksi dari isolat E. coli resistan yaitu gen blaTEM, ampC, tetA, strA dan sul1, sedangkan ermB tidak terdeteksi. Escherichia coli penghasil ESBL tidak terdeteksi. Hasil analisis kekerabatan E. coli resistan asal manusia dan hewan, serta antar isolat hewan yang berasal dari peternakan yang sama memiliki memiliki hubungan kekerabatan yang dekat. Kolaborasi multisektoral yang melibatkan sektor kesehatan manusia, kesehatan hewan dan lingkungan hidup dipandang perlu dalam upaya pengendalian resistansi antibiotik secara nasional dan global.id
dc.description.abstractAntimicrobial resistance (AMR) is currently a global health problem. Inappropriate use of antibiotics triggers the existence of resistant bacteria, which can cause a decrease in the ability of antibiotic treatment in the event of bacterial infections and even treatment failure. Escherichia coli (E. coli) are Gram-negative bacteria which are both commensal and pathogenic, also are known to be resistant to several types of antibiotics. Antibiotic resistance in E. coli indicates the presence of resistant bacteria in the environment with the potential to spread. The design of this research was an exploratory study to identify resistance patterns and genes encoding antibiotic resistance in E. coli from the pig farms in Badung Regency, Bali Province, as well as analyzing the relationship between resistant E. coli bacteria originating from animals, human and the environment. Sampling was carried out at 12 pig farms, consisted of 24 pig feces samples, 24 hand swab samples from farm workers and 12 wastewater samples. Laboratory analysis consisted of isolation-identification of E. coli using McConkey Agar media and IMViC biochemical tests, as well as molecular confirmation of E. coli using Polymerase-Chain Reaction (PCR) detection of the uspA gene. The positive E. coli results were then tested for resistance using the Kirby-Bauer Disk Diffusion method to amoxicillin (AML), ampicillin (AMP), cephalothin (KF), ceftriaxone (CRO), cefotaxime (CTX), ceftazidime (CAZ), ciprofloxacin (CIP), colistin sulfate (CT), erythromycin (E), streptomycin (S), tetracycline (TE), and trimethoprim sulfamethoxazole (SXT). Isolates of resistant E. coli were then tested for detection of ESBL-producing E. coli using the Modified Double Disk Synergy Test (MDDST), tested for genes encoding antibiotic resistance using PCR, as well as phylogenetic analysis of isolates originating from animals, human and the environment using Sanger sequencing methods and phylogenetic tree. The E. coli positive samples were identified 100% (24/24) of feces samples, 100% (12/12) of wastewater and 16,7% (4/24) of hand swab from farm workers. The antibiotic resistance pattern showed that in all isolates the highest resistance was to erythromycin, followed by amoxicillin and ampicillin, tetracycline, streptomycin, trimethoprim sulfamethoxazole. Based on the resistance pattern, a total of 14 isolates were categorized as Multi Drug Resistance (MDR), namely resistance to three or more classes of antibiotics. The resistance genes detected from resistant E. coli isolates were the blaTEM, ampC, tetA, strA and sul1, while ermB was not detected. ESBL-producing Escherichia coli was not detected. The results of the phylogenetic analysis of resistant E. coli showed close relationship between isolates originating from human and animal, also isolate originating from animals from the same farm. Multisectoral collaboration involving the human health, animal health and environmental sectors is deemed necessary in efforts to control antibiotic resistance nationally and globally.id
dc.description.sponsorshipBadan Pengembangan Sumber Daya Manusia Pertanian, Kementerian Pertanianid
dc.language.isoidid
dc.publisherIPB Universityid
dc.titleDeteksi Resistansi Antibiotik pada Escherichia coli asal Peternakan Babi di Kabupaten Badung Provinsi Bali Melalui Pendekatan One Health.id
dc.title.alternativeThe Detection of Antibiotic Resistance of Escherichia coli from The Pig Farm in Badung District Bali Province Through One Health Approachid
dc.typeThesisid
dc.subject.keywordbabiid
dc.subject.keywordEscherichia coliid
dc.subject.keywordgen resistansiid
dc.subject.keywordpola resistansiid
Appears in Collections:MT - Veterinary Science

Files in This Item:
File Description SizeFormat 
Ardiana_B3501211047_Cover.pdf
  Restricted Access
Cover1.01 MBAdobe PDFView/Open
Ardiana_B3501211047_Fulltext.pdf
  Restricted Access
Full Text2.06 MBAdobe PDFView/Open
Ardiana_B3501211047_Lampiran.pdf
  Restricted Access
Attachment692.36 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.