Please use this identifier to cite or link to this item:
http://repository.ipb.ac.id/handle/123456789/135816| Title: | Analisis Sentimen Pengguna Twitter Terhadap Layanan Transportasi Biskita Transpakuan Bogor Menggunakan Metode Ensemble |
| Other Titles: | Sentiment Analysis of Twitter Users on Biskita Transpakuan Bogor Transportation Services Using the Ensemble Method |
| Authors: | Angraini, Yenni Rizki, Akbar Imanuddin, Naufal Nashif |
| Issue Date: | 2024 |
| Publisher: | IPB University |
| Abstract: | Bogor merupakan kota terpadat kelima di Indonesia pada tahun 2021.
Tingginya jumlah angkutan umum dan kendaraan pribadi membuat pemerintah
Kota Bogor berupaya meluncurkan angkutan umum yang lebih ramah pengguna
dengan nama Biskita Transpakuan. Umpan balik dari masyarakat diperlukan untuk
terus meningkatkan kualitas pelayanan dalam memenuhi kebutuhan pengguna.
Umpan balik tersebut dapat berupa dukungan, kritik, dan saran. Analisis sentimen
digunakan untuk mengekstrak informasi berharga salah satunya dari media sosial.
Metode Ensemble dengan model dasar regresi logistik multinomial, random forest
dan multinomial naïve bayes digunakan untuk melakukan klasifikasi. Tujuan
penelitian ini untuk mengetahui performa dari model Ensemble dalam melakukan
klasifikasi sentimen. Hasil penelitian menunjukkan bahwa model Ensemble dapat
memanfaatkan kelebihan masing – masing model dasar dan mendapatkan Akurasi
serta skor F1 tertinggi yaitu sebesar 78%. Bogor is the fifth most populous city in Indonesia in 2021. The high number of public transportation and private vehicles has led the Bogor City government to launch a more user-friendly public transportation named Biskita Transpakuan. Feedback from the community is certainly needed to continue to improve service quality in meeting user needs. The feedback can be in the form of support, criticism, and suggestions. Sentiment analysis is used to extract valuable information from social media. Ensemble method with basic models of multinomial logistic regression, random forest and multinomial naïve bayes are used to perform classification. The purpose of this study is to determine the performance of the Ensemble model in performing sentiment classification. The results showed that the Ensemble model can utilize the advantages of each basic model and get the highest Akurasi and F1 score of 78% |
| URI: | http://repository.ipb.ac.id/handle/123456789/135816 |
| Appears in Collections: | UT - Statistics and Data Sciences |
Files in This Item:
| File | Description | Size | Format | |
|---|---|---|---|---|
| G14190025_Skripsi_Final_Watermark-cover.pdf Restricted Access | Cover | 558.59 kB | Adobe PDF | View/Open |
| G14190025_Skripsi_Final_Watermark.pdf Restricted Access | Full Text | 2.66 MB | Adobe PDF | View/Open |
| G14190025_Skripsi_Final_Watermark-lampiran.pdf Restricted Access | Lampiran | 438.41 kB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.