Please use this identifier to cite or link to this item: http://repository.ipb.ac.id/handle/123456789/135309
Title: Predicting Forest Fire Vulnerability Based on Climate Scenario Model Using Machine Learning Approach (Case Study of Mediterranean Region of Türkiye)
Other Titles: Pendugaan Kerawanan Kebakaran Hutan Berdasarkan Model Skenario Iklim Dengan Pendekatan Machine Learning (Studi Kasus di Wilayah Mediteranian Türkiye)
Authors: Jaya, I Nengah Surati
Syaufina, Lailan
Purnama, Miftahul Irsyadi
Issue Date: 17-Jan-2024
Publisher: IPB University
Abstract: Perubahan iklim dan pemanasan global telah meningkatkan risiko kebakaran hutan di seluruh dunia, khususnya di wilayah Mediterania. Suhu tinggi dan musim kemarau yang berkepanjangan telah menyebabkan aktivitas kebakaran yang terus meningkat di berbagai belahan dunia. Penelitian ini bertujuan membangun informasi spasial untuk memprediksi kerawanan kebakaran hutan masa depan di Mediterania Turki, dengan menggunakan skenario iklim dari Shared Socioeconomic Pathways (SSPs) / Representative Concentration Pathway (RCPs) dan menerapkan algoritma pembelajaran mesin non-parametrik. Penelitian ini menggunakan algoritma Decision Tree (DT), Naive Bayes (NB), Random Forest (RF), Artificial Neural Network (ANN), dan Support Vector Machine (SVM) untuk mengidentifikasi model prediksi yang paling efektif. Data hotspot MODIS FIRMS/VIIRS dari tahun 2001 hingga 2021 digunakan sebagai dataset indikator kejadian kebakaran, sementara berbagai variabel yang terkait dengan kebakaran hutan dipelajari untuk mengamati dinamika pola kejadian kebakaran di wilayah Mediterania. Studi ini mengidentifikasi faktor-faktor pendorong yang mempengaruhi kejadian kebakaran, termasuk kelembaban tanah, suhu, kecepatan angin, kelembaban relatif, tutupan lahan, elevasi, kemiringan, aspek, populasi, jaringan jalan, dan jaringan listrik, yang mengarah pada variasi akurasi algoritma pembelajaran mesin. Penilaian akurasi dilakukan dengan menggunakan fungsi acak dengan rasio pembagian 70% untuk data pelatihan dan rasio pembagian 30% untuk verifikasi model. Overall accuray, koefisien kappa, presisi, sensitivitas, F-Score, dan K-Fold Cros Validatioan digunakan untuk menilai kinerja ML. Selanjutnya, variabel importance dan matriks korelasi digunakan untuk memeriksa karakteristik variabel data. Studi ini menyimpulkan Algoritma RF muncul sebagai yang memiliki performa paling baik, dengan akurasi keseluruhan 0,80 dan koefisien kappa 0,71. RF juga menunjukkan presisi, sensitivitas, dan F-measure yang tinggi, masing-masing sebesar 0,78, 0,80, dan 0,78. Tutupan lahan dan temperature memiliki nilai paling penting dalam variable importance dan memiliki korelasi positif paling tinggi terhadap tingkat kebakaran. Model RF memprediksi pada tahun 2040 terjadi peningkatan yang signifikan pada area kebakaran hutan dengan tingkat level kerawanan tinggi di semua skenario SSP, dengan persentase peningkatan berkisar antara 9% hingga 11%.
Climate change and global warming have increased the risk of forest fires worldwide, particularly in the Mediterranean region. High temperatures and prolonged dry seasons have increased fire activity in many parts of the world. The research objective is establishing spatial information to predict future wildfire vulnerability in Mediterranean Turkey using climate scenarios from Shared Socioeconomic Pathways (SSPs)/Representative Concentration Pathways (RCPs) and applying non-parametric machine learning algorithms. This research utilizes Decision Tree (DT), Naive Bayes (NB), Random Forest (RF), Artificial Neural Network (ANN), and Support Vector Machine (SVM) algorithms to identify the most effective prediction model. MODIS FIRMS/VIIRS hotspot data from 2001 to 2021 were used as an indicator dataset of fire occurrence, while various variables related to forest fires were studied to observe the dynamics of fire occurrence patterns in the Mediterranean region. The study identified driving factors affecting fire occurrence, including soil moisture, temperature, wind speed, relative humidity, land cover, elevation, slope, aspect, population, road network, and power grid, leading to variations in the accuracy of machine learning algorithms. Accuracy assessment was performed using a random function with a 70% sharing ratio for training data and a 30% sharing ratio for model verification. Overall accuracy, kappa coefficient, precision, sensitivity, F-Score, and K-Fold Cros Validation were used to assess ML performance. Furthermore, variable importance and correlation matrices were used to examine the variable characteristics of the data. The study concluded that the RF algorithm emerged as the best-performing, with an overall accuracy of 0.80 and a kappa coefficient of 0.71. RF also showed high precision, sensitivity, and F-measure of 0.78, 0.80, and 0.78, respectively. Land cover and temperature had the highest values in variable importance and positively correlated with fire severity. The RF model predicts that by 2040, there will be a significant increase in the area of high-vulnerability forest fires in all SSP scenarios, with percentage increases ranging from 9% to 11%
URI: http://repository.ipb.ac.id/handle/123456789/135309
Appears in Collections:MT - Forestry

Files in This Item:
File Description SizeFormat 
Cover.pdf
  Restricted Access
Cover728.75 kBAdobe PDFView/Open
E1501202011_Miftahul Irsyadi Purnama.pdf
  Restricted Access
Fulltext2.94 MBAdobe PDFView/Open
Lampiran.pdf
  Restricted Access
Lampiran308.43 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.