Please use this identifier to cite or link to this item:
http://repository.ipb.ac.id/handle/123456789/133427
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.advisor | Kusmana, Cecep | - |
dc.contributor.advisor | Nampiah | - |
dc.contributor.author | Aulia, Shania Putri | - |
dc.date.accessioned | 2023-12-28T07:22:31Z | - |
dc.date.available | 2023-12-28T07:22:31Z | - |
dc.date.issued | 2023-12-27 | - |
dc.identifier.citation | Alam MI, Debrot AO, Ahmed MU, Ahsan MN, Verdegem MCJ. 2021. Synergistic effects of mangrove leaf litter and supplemental feed on water quality, growth and survival of shrimp (Penaeus monodon, Fabricius, 1798) post larvae. Aquaculture, 545, 737237. Alongi DM. 2021. Macro-and micronutrient cycling and crucial linkages to geochemical processes in mangrove ecosystems. Journal of Marine Science and Engineering, 9(5):456. Amade FM, Oosthuizen CJ, Chirwa PW. 2021. Genetic diversity and contemporary population genetic structure of Avicennia marina from Mozambique. Aquatic Botany, 171, 103374. Andriany A, Fahruddin F, dan Abdullah A . 2018. Pengaruh Jenis Bioaktivator Terhadap Laju Dekomposisi Serasah Daun Jati Tectona grandis L.f., di Wilayah Kampus Unhas Tamalanrea. Bioma: Jurnal Biologi Makassar, 3(2) : 31–42 Asaf S, Khan AL, Numan M, Al-Harrasi A. 2021. Mangrove tree (Avicennia marina): insight into chloroplast genome evolutionary divergence and its comparison with related species from family Acanthaceae. Scientific Reports, 11(1):3586. Baldrian P, Kolairik M, Stursova M. 2012. Active and total microbial communities in forest soil are largely different and highly stratified during decomposition. ISME J 6:248–258. Berg B, McClaugherty C. 2020. Decomposition as a Process-some Main Features. Plant litter: decomposition, humus formation, carbon sequestration, 13-43. Cooray PLIGM, Jayawardana DT, Gunathilake BM, Pupulewatte PGH. 2021. Characteristics of tropical mangrove soils and relationships with forest structural attributes in the northern coast of Sri Lanka. Regional Studies in Marine Science, 44, 101741. Devadatha B, Jones EBG, Pang KL, Abdel-Wahab MA, Hyde KD, Sakayaroj J, Zhang SN. 2021. Occurrence and geographical distribution of mangrove fungi. Fungal Diversity, 106(1):137-227. Delfan N, Shojaei MG, Naderloo R. 2021. Patterns of structural and functional diversity of macrofaunal communities in a subtropical mangrove ecosystem. Estuarine, Coastal and Shelf Science, 252, 107288. Dicen GP, Navarrete IA, Rallos RV, Salmo SG, Garcia MCA. 2019. The role of reactive iron in long-term carbon sequestration in mangrove sediments. Journal of Soils and Sediments, 19:501-510. Dix N J, Webster A J. 1995. Fungal Ecology. London: Chapman & Hall. Effendi H. 2003. Quality review water for management resources and environment waters. Canisius Publishers.Yogyakarta. Fani EF. 2022. Identification and detection of proteolytic activity of endophite bacterial isolated from Avicennia marina leaves in mempawah mangrove center. LenteraBio: Berkala Ilmiah Biologi, 11(2):293-299. 35 Gaind S. 2014. International Biodeterioration & Biodegradation Effect of fungal consortium and animal manure amendments on phosphorus fractions of paddystraw compost. Int. Biodeterior. Biodegradation, 94: 90–97. Giweta M. 2020. Role of litter production and its decomposition, and factors affecting the processes in a tropical forest ecosystem: a review. Journal of Ecology and Environment, 44(1): 11. Gultom IM. 2009. Laju dekomposisi serasah daun Rhizophora mucronata pada berbagai tingkat salinitas. [Thesis] Departemen Kehutanan Fakultas Pertanian Universitas Sumatera Utara. Medan. Halidah H. 2014. Avicennia marina (Forssk.) Vierh jenis mangrove yang kaya manfaat. Buletin Eboni, 11(1):37-44 Handayani S. 2019. Identifikasi jenis tanaman mangrove sebagai bahan pangan alternatif di kabupaten Sidoarjo Jawa Timur. Jurnal Teknologi Pangan, 12(2):33-46. Handayani T.2004. Mangrove litter decomposition rate Rhizopora mucronata on Untung Jawa Island, Thousand Islands, Jakarta. [Thesis]. Bogor Agricultural Institute. Bogor Hardjowigeno HS. 2003. Geology. Pressindo Academy. Jakarta. Hepperly PR. 1969. Hansfordia sp.: A parasitic pathogen of dematiaceous plant pathogenic fungi in Puerto Rico. Journal of Agricculture. Univ. Puerto Rico, 70:113-119. Hurst JM, Allen RB. 2007. A Permanent Plot Method for Monitoring Indigenous Forests – Field Protocols. New Zealand : Landcare Research Manaaki Whenua. Kamruzzaman Md, Basak K, Paul SK, Ahmed S, Osawa A. 2019. Litterfall production, decomposition and nutrient accumulation in Sundarbans mangrove forest, Bangladesh. Forest Science and Technology. 15(1):24 – 32. Khalimah D, Ainy EQ. 2019. Isolasi fungi endofit daun mangrove Avicennia marina dan uji aktivitasnya sebagai antifungi terhadap Candida albicans ATCC. In Symposium of Biology Education (Symbion) (Vol. 2). Kjoller AH, Struwe S. 2002. Fungal communities, succession, enzymes, and decomposition. Enzymes in the environment: Activity, ecology and applications, 1:267-284 Kusumahadi KS, Yusuf A, Maulana RG. 2020. Analisis Keanekaragaman Jenis Vegetasi Mangrove di Kawasan Hutan Lindung Angke-Kapuk dan Taman Wisata Alam Angke-Kapuk Muara Angke Kota Jakarta Utara. Ilmu dan Budaya, 41(69). Kuthubutheen AJ. 1984. Leaf Surface Fungi Associated with Avicennia alba and Rhizophora mucronata in Malaysia. Hlm : 153 – 171 dalam Proceedings of the Asian Symposium on Mangrove Environment Research and Management. E. Soepadmo, A. N. Rao dan D. J. Macintosh (Peny.). University of Malaya & UNESCO. Kuala Lumpur Kuter GA. 1986. Microfungal populations associated with the decomposition og sugar maple leaf litter. Mycologia 78:114 – 126. Lin X, Hetharua B, Lin L, Xu H, Zheng T, He Z, Tian Y. 2019. Mangrove sediment microbiome: adaptive microbial assemblages and their routed 36 biogeochemical processes in Yunxiao mangrove national nature reserve, China. Microbial ecology, 78:57-69. Mamidala HP, Ganguly D, Purvaja R, Singh G, Das S, Rao MN, Ramesh R. 2023. Interspecific variations in leaf litter decomposition and nutrient release from tropical mangroves. Journal of Environmental Management, 328:116902. Mao R, Wu PP, Xu JW, Wan SZ, Zhang Y. 2021. Leaf litter decomposition in the air should not be ignored in subtropical plantations of China. Forest Ecology and Management, 499, 119614. Martin C, Almahasheer H, Duarte CM. 2019. Mangrove forests as traps for marine litter. Environ Pollut 247:499-508. DOI: 10.1016/j.envpol.2019.01.067 Moitinho MA, Chiaramonte JB, Bononi L, Gumiere T, Melo IS, Taketani RG. 2022. Fungal succession on the decomposition of three plant species from a Brazilian mangrove. Scientific reports 12(1):14547. Naranjo ML, Cordero JAS, Cortés J. 2019. Mangrove leaf litter decomposition in a seasonal tropical environment. Journal of Coastal Research, 35(1):122- 129. Olson JS. 1963. Energy storage and the balance of producer and decomposers in ecological systems. Ecology. 44:322 – 331. Paulus B, Gadek P, Hyde KD. 2003. Estimation of microfungal diversity in tropical rainforest leaf litter using particle filtration: the rffect of leaf storage and surface treatment. Mycol Res 107(6):748 – 756. Perez A, Machado W, Sanders CJ. 2021. Anthropogenic and environmental influences on nutrient accumulation in mangrove sediments. Marine Pollution Bulletin, 165, 112174. Prakash CP, Thirumalai E, Rajulu MG, Thirunavukkarasu N, Suryanarayanan TS. 2015. Ecology and diversity of leaf litter fungi during early-stage decomposition in a seasonally dry tropical forest. Fungal ecology, 17:103- 113. Promputtha I, Lumyong S, Lumyong P, McKenzie EC. 2002. Suksesi cendawan pada penuaan daun dari Manglietia garrettiidi Taman Nasional Doi Suthep Pui, Thailand utara. Keanekaragaman Jamur 10:89–100 Raghukumar S. 2017. Fungi in Coastal and Oceanic Marine Ecosystem: Marine Fungi. Goa Velha (IN): Springer. Ramos SM, Graça MA, Ferreira V. 2021. A comparison of decomposition rates and biological colonization of leaf litter from tropical and temperate origins. Aquatic Ecology, 55(3):925-940. Sayer EJ, Rodtassana C, Sheldrake M, Brechet LM. 2020. Revisiting nutrient cycling by litter fall – Insights from 15 years of litter manipulation in old growth lowland tropical forest. Advances in Ecological Research 62:173– 223. Sebastianes FLDS, Romao-Dumaresq AS, Lacava PT. 2013. Species diversity of culturable endophytic fungi from Brazilian mangrove forests. Curr Genet 59:153–166. Setiawan H. 2013. Status Ekologi Hutan Mangrove Pada Berbagai Tingkat Ketebalan. Jurnal Penelitian Kehutanan Wallacea, 2(2):104-120. Subowo YB, Corazon. 2010. Seleksi Jamur Tanah Pengurai Lignin dan PAH dari Beberapa Lingkungan di Bali. Jurnal Berita Biologi 10(2). Bidang 37 Mikrobiologi, Pusat Penelitian Biologi, Lembaga Ilmu Pengetahuan Indonesia (LIPI), Bogor. Stalpers JA. 1974. Revision of the genus Oedocephalum (Fungi Imperfecti). Proc. Kon. Ned. Akad. Wet., Ser. C, 77: 383-401. Su J, Friess DA, Gasparatos A. 2021. A meta-analysis of the ecological and economic outcomes of mangrove restoration. Nature Communications, 12(1):5050. Tennakoon DS, Gentekaki E, Jeewon R, Kuo CH, Promputtha I, Hyde JD. 2021. Life in leaf litter: Fungal community succession during decomposition. Mycosphere. 12(1):406 – 429. Vinh TV, Allenbach M, Linh KTV, Marchand C. 2020. Changes in leaf litter quality during its decomposition in a tropical planted mangrove forest (Can Gio, Vietnam). Frontiers in Environmental Science, 8, 10. Wang L, Jia M, Yin D, Tian J. 2019. A review of remote sensing for mangrove forests: 1956–2018. Remote Sensing of Environment, 231, 111223. Watanabe T. 1991. New species of Oedocephalum and Papulaspora from Japanese soils. Mycologia, 83(4):524-529. Waring RH, dan Schlessinger WH. 1985. Forest ecosystems-concepts and management. Academic Press, Orlando, Florida. Zhao B, Xing P, Wu QL. 2021. Interactions between bacteria and fungi in macrophyte leaf litter decomposition. Environmental Microbiology, 23(2):1130-1144. Zhuang W, Yu X, Hu R, Luo Z, Liu X, Zheng X, He Z. 2020. Diversity, function and assembly of mangrove root-associated microbial communities at a continuous fine-scale. npj Biofilms and Microbiomes, 6(1):52. Zin NA, Badaluddin NA. 2020. Biological functions of Trichoderma spp. for agriculture applications. Annals of Agricultural Sciences, 65(2):168-178. | id |
dc.identifier.uri | http://repository.ipb.ac.id/handle/123456789/133427 | - |
dc.description | x, 38 hlm. | id |
dc.description.abstract | Mangrove merupakan satu dari ekosistem produktif di dunia terutama dalam bentuk produktivitas primer berupa produksi jatuhan serasah serta dekomposisi dan pelepasan nutrient. Serasah mangrove mempunyai peranan penting terhadap kesuburan perairan pesisir, karena serasah mangrove yang membusuk akan menghasilkan unsur hara yang diserap oleh tanaman dan digunakan oleh mikroorganisme yang ada di dasar hutan, kemudian sebagian lagi akan terlarut dan terbawa ke perairan sekitarnya. Cendawan merupakan mikroorganisme paling aktif dan memainkan peran penting dalam proses dekomposisi bahan lignoselulosa di ekosistem mangrove. Penelitian tentang dekomposisi di hutan lindung mangrove Angke Kapuk ini dibatasi pada serasah daun Avicennia marina pada area medium high tide yaitu tergenang selama 9 sampai 20 kali dalam waktu sebulan. Pemilihan jenis Avicennia marina didasarkan pada pertimbangan bahwa jenis ini merupakan jenis dominan di lokasi penelitian. Informasi yang terbatas mengenai laju dekomposisi serasah daun mangrove mengakibatkan masyarakat tidak peduli terhadap pentingnya manfaat mangrove serta keberadaan serasahnya yang dapat meningkatkan kandungan unsur hara. Tujuan penelitian ini adalah : (1) menduga laju dekomposisi serasah daun Avicennia marina, (2) mengidentifikasi jenis cendawan dominan yang berperan dalam dekomposisi serasah daun Avicennia marina dan (3) menganalisis kandungan unsur hara makro N, P, K, dan C-organik pada serasah daun Avicennia marina selama proses dekomposisi. Penelitian ini dilaksanakan pada pada bulan September 2022 sampai Januari 2023 di kawasan Hutan Lindung Angke Kapuk, Jakarta. Penentuan populasi cendawan dilakukan dengan menggunakan metode pencucian (washing method) dan metode penyaringan partikel (particle filtration method). Hasil dari penelitian ini menunjukkan bahwa nilai rata-rata laju dekomposisi serasah daun Avicennia marina pada area medium high tide di Hutan Lindung Muara Angke yaitu 0,020. Semakin lama waktu dekomposisi serasah, maka semakin meningkat unsur hara N, P, dan C-organik sedangkan unsur hara K menurun. Cendawan dominan yang ditemukan pada serasah daun Avicennia marina selama proses dekomposisi yaitu Aspergillus sp. 2 sebanyak 59 isolat | id |
dc.language.iso | id | id |
dc.publisher | IPB University | id |
dc.subject.ddc | Silvikultur Tropika | id |
dc.title | Laju, Pelepasan Unsur Hara dan Suksesi Okupasi Cendawan dalam Proses Dekomposisi Serasah di area Medium High Tide, Hutan Lindung Mangrove Muara Angke | id |
dc.type | Thesis | id |
dc.subject.keyword | Avicennia marina | id |
dc.subject.keyword | medium high tide | id |
dc.subject.keyword | laju dekomposisi | id |
dc.subject.keyword | unsur hara | id |
dc.subject.keyword | cendawan | id |
Appears in Collections: | MT - Forestry |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
Cover.pdf Restricted Access | Cover | 819.52 kB | Adobe PDF | View/Open |
Full teks.pdf Restricted Access | Fulltext | 1.67 MB | Adobe PDF | View/Open |
Lampiran.pdf Restricted Access | Lampiran | 243.94 kB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.