Please use this identifier to cite or link to this item: http://repository.ipb.ac.id/handle/123456789/125468
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorJaya, I Nengah Surati-
dc.contributor.authorPadantya, Athallah Syafiq-
dc.date.accessioned2023-09-26T04:18:03Z-
dc.date.available2023-09-26T04:18:03Z-
dc.date.issued2023-09-26-
dc.identifier.urihttp://repository.ipb.ac.id/handle/123456789/125468-
dc.description.abstractTulisan ini menjelaskan tentang pembangunan algoritma pohon keputusan dari pembelajar mesin menggunakan data penginderaan jauh dan data geospasial untuk mengidentifikasi tanaman kakao agroforestri dan kakao monokultur. Tujuan dari penelitian ini adalah untuk menentukan peubah, atribut, dan parameter dalam mengidentifikasi agroforestri kakao dan kakao monokultur menggunakan citra SPOT 7 dengan fitur indeks vegetasi dan parameter geo-sosio-biofisik menggunakan mesin pembelajaran pohon keputusan. Penelitian ini menemukan bahwa peubah yang paling berpengaruh adalah NDVI dan elevasi. Penelitian ini juga menemukan bahwa parameter yang paling berpengaruh adalah Information Gain dengan kombinasi tanpa pemangkasan (pruning), tanpa pra-pangkas (pre pruning), kedalaman pohon 51, pra-pangkas alternatif (pre-pruning alternative) 21, ukuran daun 21, dan jenis sampel yang digunakan adalah Random Sampling. Kajian ini menghasilkan nilai Overall Accuracy (OA) sebesar 93,56% dan Kappa Accuracy (KA) sebesar 92,9%. ATHALLAH SYAFIQ PADANTYA. Application of the Decision Tree of Machine Learning Algorithm in the Detection of Cocoa Agroforestry: a Case Study of Baebunta and South Baebunta Districts, North Luwu. Supervised by I NENGAH SURATI JAYA. This paper describes the development of a decision tree of machine learning algorithm using remote sensing data and geospatial data to identify agroforestry and monoculture cocoa plants. The purpose of this research is to determine variables, attributes, and parameters in identifying cocoa agroforestry and cocoa monoculture using SPOT 7 with vegetation index features and geo-socio-biophysical parameters using machine learning decision tree. This study found that the most influential variables were NDVI and elevation. This study also found that the most influential parameter was Information Gain with a combination of no pruning, no pre-pruning, tree depth of 51, pre-pruning alternative of 21, leaf size of 21, and the type of sample which is random sampling. This study resulted an Overall Accuracy (OA) value of 93,56% and a Kappa Accuracy (KA) value of 92,9%.id
dc.language.isoidid
dc.publisherIPB Universityid
dc.titleAplikasi Algoritma Pohon Keputusan Pembelajar Mesin (Decision Tree of Machine Learning) dalam Deteksi Agroforestri Kakao: Studi Kasus Kecamatan Baebunta dan Baebunta Selatan, Luwu Utaraid
dc.typeUndergraduate Thesisid
dc.subject.keywordindeks vegetasiid
dc.subject.keywordgeo-sosio-biofisikid
dc.subject.keywordpohon keputusanid
dc.subject.keywordmesin pembelajarid
Appears in Collections:UT - Forest Management

Files in This Item:
File Description SizeFormat 
Cover.pdf
  Restricted Access
Cover976.5 kBAdobe PDFView/Open
E14190077_Athallah Syafiq Padantya.pdf
  Restricted Access
Fullteks2.78 MBAdobe PDFView/Open
Lampiran.pdf
  Restricted Access
Lampiran383.81 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.