Please use this identifier to cite or link to this item: http://repository.ipb.ac.id/handle/123456789/123656
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorAswidinnoor, Hajril-
dc.contributor.advisorGhulamahdi, Munif-
dc.contributor.advisorTrikoesoemaningtyas-
dc.contributor.advisorSuwarno, Willy Bayuardi-
dc.contributor.advisorSusanto, Untung-
dc.contributor.authorRohaeni, Wage Ratna-
dc.date.accessioned2023-08-11T06:52:33Z-
dc.date.available2023-08-11T06:52:33Z-
dc.date.issued2023-07-23-
dc.identifier.citationAbbaspour N, Hurrell R, Kelishadi R. 2014. Review on iron and its importance for human health. J Res Med Sci. 19(2):164–174. Abdollahi M, Ajami M, Abdollahi Z, Kalantari N, Houshiarrad A, Fozouni F, Fallahrokni A, Mazandarani FS. 2019. Zinc supplementation is an effective and feasible strategy to prevent growth retardation in 6 to 24 month children: A pragmatic double blind, randomized trial. Heliyon. 5(11):1–7. doi:10.1016/j.heliyon.2019.e02581. Anusha G, Rao DS, Jaldhani V, Beulah P, Neeraja CN, Gireesh C, Anantha MS, Suneetha K, Santhosha R, Prasad ASH, et al. 2021. Grain Fe and Zn content, heterosis, combining ability and its association with grain yield in irrigated and aerobic rice. Sci Rep. 11(1):1–12. doi:10.1038/s41598-021-90038-4. Ashok Kumar A, Reddy BVS, Ramaiah B, Sahrawat KL, Pfeiffer WH. 2013. Gene effects and heterosis for grain iron and zinc concentration in sorghum [Sorghum bicolor (L.) Moench]. F Crop Res. 146:86–95. doi:10.1016/j.fcr.2013.03.001. Bandumula N. 2018. Rice Production in Asia: Key to Global Food Security. Proc Natl Acad Sci India Sect B - Biol Sci. 88(4):1323–1328. doi:10.1007/s40011- 017-0867-7. Barokah U, Susanto U, Swamy M, Djoar DW, Parjanto. 2018. High-zinc rice as a breakthrough for high nutritional rice breeding program. IOP Conf Ser Earth Environ Sci. 129(1):1–7. doi:10.1088/1755-1315/129/1/012004. BBPadi. 2021. Deskripsi Deskripsi Varietas. Sastro Y, Hairmansis A, Hasmi I, Rumanti IA, Susanti Z, Kusbiantoro B, Handoko DD, Sitaresmi T, Norvyani M, Arismiati D, editor. Subang: BB Padi Media. Beal T, Tumilowicz A, Sutrisna A, Izwardy D, Neufeld LM. 2018. A review of child stunting determinants in Indonesia. Matern Child Nutr. 14(4):1–10. doi:10.1111/mcn.12617. Bhagyawant SS, Bhadkaria A, Gupta N, Srivastava N. 2018. Impact of phytic acid on nutrient bioaccessibility and antioxidant properties of chickpea genotypes. J Food Biochem. 42(6):1–9. doi:10.1111/jfbc.12678. Black RE, Allen LH, Bhutta ZA, Caulfield LE, de Onis M, Ezzati M, Mathers C, Rivera J. 2008. Maternal and child undernutrition: global and regional exposures and health consequences. Lancet. 371(1):243–260. doi:10.1016/S0140-6736(07)61690-0. Botoman L, Chimungu JG, Bailey EH, Munthali MW, Ander EL, Mossa AW, Young SD, Broadley MR, Lark RM, Nalivata PC. 2022. Agronomic biofortification increases grain zinc concentration of maize grown under contrasting soil types in Malawi. Plant Direct. 6(11):1–10. doi:10.1002/pld3.458. Brown KH, Hambidge KM, Ranum P. 2010. Zinc fortification of cereal flours: Current recommendations and research needs. Food Nutr Bull. 31 1 SUPPL.:62–74. doi:10.1177/15648265100311s106. Cabot C, Martos S, Llugany M, Gallego B, Tolrà R, Poschenrieder C. 2019. A role for zinc in plant defense against pathogens and herbivores. Front Plant Sci. 10(10):1–15. doi:10.3389/fpls.2019.01171. Cakmak I, Kutman UB. 2018. Agronomic biofortification of cereals with zinc: a review. Eur J Soil Sci. 69(1):172–180. doi:10.1111/ejss.12437. Calayugan MIC, Formantes AK, Amparado A, Descalsota-Empleo GI, Nha CT, Inabangan-Asilo MA, Swe ZM, Hernandez JE, Borromeo TH, Lalusin AG, et al. 2020. Genetic Analysis of Agronomic Traits and Grain Iron and Zinc Concentrations in a Doubled Haploid Population of Rice (Oryza sativa L.). Sci Rep. 10(1):1–14. doi:10.1038/s41598-020-59184-z. Calayugan MIC, Swamy BPM, Nha CT, Palanog AD, Biswas PS, Descalsota empleo GI, Myat Y, Min M, Inabangan-asilo MA. 2021. Zinc-Biofortified Rice: A Sustainable Food- Based Product for Fighting Zinc Malnutrition. Di dalam: J. Ali SHW, editor. Rice Improvement. 1st eds. Los Baňos, Philippines: Springer, Cham. hlm 449–470. Changrong Y, Xiaolin L, Redoña E, Ishimaru T, Jagadish K. 2021. Genetics and Breeding of Heat Tolerance in Rice. Di dalam: Ali J, Wani SH, editor. Rice Improvement: Physiological, Molecular Breeding and Genetic Perspectives. Ed ke-1 Cham, Switzerland: Springer Nature Switzerland AG. hlm 203–220. Chasapis CT, Ntoupa PSA, Spiliopoulou CA, Stefanidou ME. 2020. Recent aspects of the effects of zinc on human health. Arch Toxicol. 94(5):1443–1460. doi:10.1007/s00204-020-02702-9. Crespo-Herrera LA, Govindan V, Stangoulis J, Hao Y, Singh RP. 2017. QTL mapping of grain Zn and Fe concentrations in two hexaploid wheat RIL populations with ample transgressive segregation. Front Plant Sci. 8 October:1–12. doi:10.3389/fpls.2017.01800. Davies NT, Reid H. 1979. An evaluation of the phytate, zinc, copper, iron and manganese contents of, and Zn availability from, soya-based textured vegetable-protein meat-substitutes or meat-extenders. Br J Nutr. 41(3):579– 589. doi:10.1079/bjn19790073. Diaz S, Polania J, Ariza-Suarez D, Cajiao C, Grajales M, Raatz B. 2022. Genetic Correlation Between Fe and Zn Biofortification and Yield Components in a Common Bean (Phaseolus vulgaris L.). Front Plant Sci. 12 January:1–13. doi:10.3389/fpls.2021.739033. Dipti SS, Bergman C, Indrasari SD, Herath T, Hall R, Lee H, Habibi F, Bassinello PZ, Graterol E, Ferraz JP, et al. 2012. The potential of rice to offer solutions for malnutrition and chronic diseases. Rice. 5(1):1–18. doi:10.1186/1939- 8433-5-16. Dittrich-Reed DR, Fitzpatrick BM. 2013. Transgressive hybrids as hopeful monsters. Evol Biol. 40(2):310–315. doi:10.1007/s11692-012-9209-0. Erfanti DO, Setiabudi D, Rusmil K. 2016. The Relationship of psychosocial dysfunction and stunting of adolescents in suburban, Indonesia. Open J Med Psychol. 5(4):57–65. doi:10.4236/ojmp.2016.54007. Faiz A, Hanafi MM, Hakim MA, Rafii MY, Abdullah SNA. 2015. Micronutrients, antioxidant activity, and tocochromanol contents of selected pigmented upland rice genotypes. Int J Agric Biol. 17(4):741–747. doi:10.17957/IJAB/14.0013. Farshadfar E, Rashidi M, Jowkar MM, Zali H. 2013. Investigation of genotype × environment interaction in chickpea genotypes using AMMI and GGE biplot analysis. Euro J Exp Bio. 3(1):417–423. doi:10.17557/tjfc.414846. Fones H, Preston GM. 2013. The impact of transition metals on bacterial plant disease. FEMS Microbiol Rev. 37(4):495–519. doi:10.1111/1574-6976.12004. Fongfon S, Prom-U-thai C, Pusadee T, Jamjod S. 2021. Responses of purple rice genotypes to nitrogen and zinc fertilizer application on grain yield, nitrogen, zinc, and anthocyanin concentration. Plants. 10(8):1–13. doi:10.3390/plants10081717. Fukai S, Basnayake J, Makara O. 2009. Drought resistance characters and variety development for rainfed lowland rice in southeast asia. Drought Front Rice Crop Improv Increased Rainfed Prod., siap terbit. Garg M, Sharma N, Sharma S, Kapoor P, Kumar A, Chunduri V, Arora P. 2018. Biofortified crops generated by breeding, agronomy, and transgenic approaches are improving lives of millions of people around the world. Front Nutr. 5(1):1–33. doi:10.3389/fnut.2018.00012. Graf E, Eaton JW. 1990. Antioxidant function of phytic acid. Free Radic Biol Med. 8:61–69. Hama Salih KHK, Rasheed MS, Mohammed HJ, Saeed AAM. 2021. The Estimation of Iron, Zinc, Phytic Acid Contents and Their Molar Ratios in Different Types of Bread and Rice Consumed in Halabja City, Iraqi Kurdistan. IOP Conf Ser Earth Environ Sci. 910(1). doi:10.1088/1755- 1315/910/1/012131. Hariprasanna K, Agte V, Patil J V. 2014. Genetic control and heterosis for grain iron and zinc contents in sorghum [Sorghum bicolor (L.) Moench]. Indian J Genet Plant Breed. 74(4):638–643. doi:10.5958/0975-6906.2014.00903.1. HarvestPlus. 2018. Biofortification : The Evidence. Harvest Plus Washington, DC, USA. August:1–11. Hatija S, Sulistyaningsih. 2016. Prefrensi Petani terhadap Varietas Benih Padi (Studi Kasus Desa Talkandang Kecamatan Situbondo Kabupaten Situbondo). J Ilm Agribios. 14(2):12–22. Hurrell R, Egli I. 2010. Iron bioavailability and dietary reference values. Am J Clin Nutr. 91(5):1461S-1467S. doi:10.3945/ajcn.2010.28674F. Ibrahim S, Saleem B, Rehman N, Zafar SA, Naeem MK, Khan MR. 2021. CRISPR/Cas9 mediated disruption of Inositol Pentakisphosphate 2-Kinase 1 (TaIPK1) reduces phytic acid and improves iron and zinc accumulation in wheat grains. J Adv Res. 1. doi:10.1016/j.jare.2021.07.006. Impa SM, Morete MJ, Ismail AM, Schulin R, Johnson-Beebout SE. 2013. Zn uptake, translocation and grain Zn loading in rice (Oryza sativa L.) genotypes selected for Zn deficiency tolerance and high grain Zn. J Exp Bot. 64(10):2739–2751. doi:10.1093/jxb/ert118. Inabangan-Asilo MA, Mallikarjuna Swamy BP, Amparado AF, Descalsota-Empleo GIL, Arocena EC, Reinke R. 2019. Stability and G × E analysis of zinc biofortified rice genotypes evaluated in diverse environments. Euphytica. 215(3):1–17. doi:10.1007/s10681-019-2384-7. Indrasari SD, Wibowo P, Daradjat AA. 2009. Kandungan mineral beras varieats unggul baru. Di dalam: Seminar Nasional Padi 2008. Subang: Balai Besar Penelitian Tanaman Padi. hlm 1457–1472. http://www.litbang.pertanian.go.id/special/padi/bbpadi_2008_prosb412.pdf. Ishimaru Y, Masuda H, Suzuki M, Bashir K, Takahashi M, Nakanishi H, Mori S, Nishizawa NK. 2007. Overexpression of the OsZIP4 zinc transporter confers disarrangement of zinc distribution in rice plants. J Exp Bot. 58(11):2909– 2915. doi:10.1093/jxb/erm147. Ito VC, Lacerda LG. 2019. Black rice (Oryza sativa L.): A review of its historical aspects, chemical composition, nutritional and functional properties, and applications and processing technologies. Food Chem. 301 April:1–13. doi:10.1016/j.foodchem.2019.125304. Jaksomsak P, Rerkasem B, Prom-U-Thai C. 2021. Variation in nutritional quality of pigmented rice varieties under different water regimes. Plant Prod Sci. 24(2):244–255. doi:10.1080/1343943X.2020.1819164. Jambormias E. 2014. Analisis genetik dan segregasi transgresif berbasis informasi kekerabatan untuk potensi hasil dan panen serempak kacang hijau [disertasi]. Bogor: IPB University. Kanatti A, Govindaraj M, Rai KN, Rao AS. 2019. Maternal inheritance of grain iron and zinc densities in pearl millet. Indian J Genet Plant Breed. 79(4):756– 759. doi:10.31742/IJGPB.79.4.15. Kanatti A, Rai KN, Radhika K, Govindaraj M, Sahrawat KL, Srinivasu K, Shivade H. 2014. Relationship of grain iron and zinc content with grain yield in pearl millet hybrids. Crop Improv. 41(1):91–96. https://www.researchgate.net/publication/280555899_Relationship_of_grain _iron_and_zinc_content_with_grain_yield_in_pearl_millet_hybrids. Keerthana K, Chitra S, Subramanian A, Nithila S, Elangovan M. 2019. Studies on genetic variability in finger millet [Eleusine coracana (L.) Gaertn] genotypes under sodic conditions. Electron J Plant Breed. 10(2):566–569. doi:10.5958/0975-928X.2019.00071.1. Khokhar JS, King J, King IP, Young SD, Foulkes MJ, De Silva J, Weerasinghe M, Mossa A, Griffiths S, Riche AB, et al. 2020. Novel sources of variation in grain Zinc (Zn) concentration in bread wheat germplasm derived from Watkins landraces. PLoS One. 15(2):e0229107. doi:10.1371/journal.pone.0229107. Koide Y, Sakaguchi S, Uchiyama T, Ota Y, Tezuka A, Nagano AJ, Ishiguro S, Takamure I, Kishima Y. 2019. Genetic properties responsible for the transgressive segregation of days to heading in rice. G3 Genes, Genomes, Genet. 9(5):1655–1662. doi:10.1534/g3.119.201011. Krithika S, Balachandar D. 2016. Expression of zinc transporter genes in rice as influenced by zinc-solubilizing enterobacter cloacae strain ZSB14. Front Plant Sci. 7(4):1–9. doi:10.3389/fpls.2016.00446. Kumar A, Lal MK, Kar SS, Nayak L, Ngangkham U, Samantaray S, Sharma SG. 2017. Bioavailability of iron and zinc as affected by phytic acid content in rice grain. J Food Biochem. 41(6):1–9. doi:10.1111/jfbc.12413. Kurapati S, Kommineni R, Variath MT, Manohar SS, Vemulapalli P, Vemireddy LNR, Pasupuleti J. 2021. Localization and gene action studies for kernel iron and zinc concentration in groundnut (Arachis hypogaea L.). Euphytica. 217(7). doi:10.1007/s10681-021-02872-2. Leardkamolkarn V, Thongthep W, Suttiarporn P, Kongkachuichai R, Wongpornchai S, Wanavijitr A. 2011. Chemopreventive properties of the bran extracted from a newly-developed Thai rice: The Riceberry. Food Chem. 125(3):978–985. doi:10.1016/j.foodchem.2010.09.093. Li JY, Wang J, Zeigler RS. 2014. The 3,000 rice genomes project: New opportunities and challenges for future rice research. Gigascience. 3(1):1–3. doi:10.1186/2047-217X-3-8. Liu DY, Liu YM, Zhang W, Chen XP, Zou CQ. 2019. Zinc uptake, translocation, and remobilization in winter wheat as affected by soil application of zn fertilizer. Front Plant Sci. 10:1–10. doi:10.3389/fpls.2019.00426. Liu H, Wang ZH, Li F, Li K, Yang N, Yang Y, Huang D, Liang D, Zhao H, Mao H, et al. 2014. Grain iron and zinc concentrations of wheat and their relationships to yield in major wheat production areas in China. F Crop Res. 156:151–160. doi:10.1016/j.fcr.2013.11.011. Liu L, Cong W, Suter B, Zhang F, Werf W Van Der, Jan T. 2023. Field Crops Research How much can Zn or Fe fertilization contribute to Zn and Fe mass concentration in rice grain ? A global meta-analysis. F Crop Res. 301 June:109033. doi:10.1016/j.fcr.2023.109033. Lopez A, Cacoub P, Macdougall IC, Peyrin-Biroulet L. 2016. Iron deficiency anaemia. Lancet. 387(10021):907–916. doi:10.1016/S0140-6736(15)60865-0. Lu L, Tian S, Liao H, Zhang J, Yang X, Labavitch JM, Chen W. 2013. Analysis of Metal Element Distributions in Rice (Oryza sativa L.) Seeds and Relocation during Germination Based on X-Ray Fluorescence Imaging of Zn, Fe, K, Ca, and Mn. PLoS One. 8(2):1–9. doi:10.1371/journal.pone.0057360. Malik KA, Maqbool A. 2020. Transgenic Crops for Biofortification. Front Sustain Food Syst. 4(11):1–15. doi:10.3389/fsufs.2020.571402. Martorell R. 2018. Improved Nutrition in the First 1000 Days and Adult Human Capital and Health. Am J Hum Biol. 29(2):1–24. doi:10.1002/ajhb.22952.Improved. Meher D, Samantara K, Behera A, Mohapatra SR. 2020. Folk rice: Genetic storehouse for biofortification: A review. Int J Chem Stud. 8(2):1813–1816. doi:10.22271/chemi.2020.v8.i2ab.9025. Moura J de O, Rocha M de M, Ferreira Gomes RL, Freire Filho FR, Damascenoe Silva KJ, Ribeiro VQ. 2012. Path analysis of iron and zinc contents and others traits in cowpea. Crop Breed Appl Biotechnol. 12(4):245–252. doi:10.1590/S1984-70332012000400003. Mukamuhirwa F, Tusiime G, Mukankusi MC. 2015. Inheritance of high iron and zinc concentration in selected bean varieties. Euphytica. 205(2):349–360. doi:10.1007/s10681-015-1385-4. Nafisha AU, Suwarsito. 2018. Kajian Pengaruh Pola Curah Hujan terhadap Produktivitas Padi di Kecamatan Pagerbarang Kabupaten Tegal. SAINTEKS. 15(1): 31 – 37. Nakandalage N, Nicolas M, Norton RM, Hirotsu N, Milham PJ, Seneweera S. 2016. Improving rice zinc biofortification success rates through genetic and crop management approaches in a changing environment. Front Plant Sci. 7(6):1– 13. doi:10.3389/fpls.2016.00764. Nurhidayah S, Wahyu Y, Bayuardi Suwarno DW. 2017. Parameter Genetik dan Deteksi Segregan Transgresif pada Populasi Kacang Tanah (Arachis hypogaea L.) Generasi F3. J Agron Indones (Indonesian J Agron. 45(2):162. doi:10.24831/jai.v45i2.12940. Nurjanah L. 2022. Perbedaan Kandungan Serta Bioavailabilitas Mineral Zinc dan Besi pada Nasi Nutrizinc dan Ciherang. Volume ke-33. Oladosu Y, Rafii MY, Magaji U, Abdullah N, Ramli A, Hussin G. 2017. Assessing The Representative And Discriminative Ability Of Test Environments For Rice Breeding In Malaysia Using GGE Biplot. Int J Sci Technol Res. 6(11):8– 16. www.ijstr.org. Olson R, Gavin-Smith B, Ferraboschi C, Kraemer K. 2021. Food fortification: The advantages, disadvantages and lessons from sight and life programs. Nutrients. 13(4):1–12. doi:10.3390/nu13041118. Pabuayon ICM, Kitazumi A, Cushman KR, Singh RK, Gregorio GB, Dhatt B, Zabet-Moghaddam M, Walia H, de los Reyes BG. 2021. Novel and transgressive salinity tolerance in recombinant inbred lines of rice created by physiological coupling-uncoupling and network rewiring effects. Front Plant Sci. 12(2):1–22. doi:10.3389/fpls.2021.615277. Palanisamy S. 2018. Genetic Analysis of Biofortification of Micronutrient Breeding in Rice (Oryza sativa L.). Di dalam: Shah F, Khan ZH, Iqbal A, editor. Rice Crop - Current Developments. Tamil Nadu: IntechOpen. hlm 17–24. Pane H, Wihardjaka A, Fagi AM. 2009. Menggali potensi padi sawah tadah hujan. Di dalam: Buku Padi. hlm 643. Paramesh V, Dhar S, Dass A, Kumar B, Kumar A, El-Ansary DO, Elansary HO. 2020. Role of integrated nutrient management and agronomic fortification of zinc on yield, nutrient uptake and quality of wheat. Sustain. 12(9):1–12. doi:10.3390/SU12093513. Pramudyawardani EF, Suprihatno B, Mejaya MJ. 2015. Potensi Hasil Galur Harapan Padi Sawah Ultra Genjah dan Sangat Genjah. J Penelit Pertan Tanam Pangan. 34(1):1. doi:10.21082/jpptp.v34n1.2015.p1-11. Pujar M, Govindaraj M, Gangaprasad S, Kanatti A, Gowda TH, Dushyantha Kumar BM, Satish KM. 2022. Generation Mean Analysis Reveals the Predominant Gene Effects for Grain Iron and Zinc Contents in Pearl Millet. Front Plant Sci. 12 January:1–13. doi:10.3389/fpls.2021.693680. Rakotondramanana M, Tanaka R, Pariasca-Tanaka J, Stangoulis J, Grenier C, Wissuwa M. 2022. Genomic prediction of zinc-biofortification potential in rice gene bank accessions. Theor Appl Genet. 135(7):2265–2278. doi:10.1007/s00122-022-04110-2. Rao DS, Neeraja CN, Madhu Babu P, Nirmala B, Suman K, Rao LVS, Surekha K, Raghu P, Longvah T, Surendra P, et al. 2020. Zinc biofortified rice varieties: challenges, possibilities, and progress in India. Front Nutr. 7(4):1–13. doi:10.3389/fnut.2020.00026. Read SA, Obeid S, Ahlenstiel C, Ahlenstiel G. 2019. The Role of Zinc in Antiviral Immunity ScottARead. Adv Nutr. 10(4):696–710. doi:10.1093/advances/nmz013. Reddyyamini B, Hariprasad Reddy K, Narayana Reddy VL, Ramesh Babu P, Sudhakar P. 2019. Transgressive segregation for yield and its component traits in rice (Oryza sativa L.). Int J Curr Microbiol Appl Sci. 8(06):2450–2455. doi:10.20546/ijcmas.2019.806.292. Ribeiro ND, Mezzomo HC, Dos Santos GG. 2019. Genetic parameters and combined selection for seed coat color and macrominerals in mesoamerican common bean lines. Genet Mol Res. 18(2). doi:10.4238/gmr18224. Rieseberg LH, Archer MA, Wayne RK. 1999. Transgressive segregation, adaptation and speciation. Heredity (Edinb). 83(4):363–372. doi:10.1038/sj.hdy.6886170. Ritonga AW, Syukur M, Chozin MA, Maharijaya A, Sobir ,. 2019. Perbedaan Respon Seleksi, Kemajuan Seleksi, dan Jumlah Segregan Transgresif Hasil Persilangan Tomat Suka Naungan dengan Tomat Peka Naungan. Comm Hortic J. 1(1):32. doi:10.29244/chj.1.1.32-38. Rohaeni WR, Supriadi E, Susanto U, Dewi Rosahdi T. 2016. Fe and Zn content of brown rice and milled rice on brown planthopper tolerant rice lines. J Ilmu Pertan Indones. 21(3):172–176. doi:10.18343/jipi.21.3.172. Rohaeni WR, Susanto U. 2021a. Fe and Zn content of various genetic background of released rice varieties in Indonesia. IOP Conf Ser Earth Environ Sci. 752(1– 6). doi:10.1088/1755-1315/752/1/012057. Rohaeni WR, Susanto U. 2021b. Fe and Zn content of various genetic background of released rice varieties in Indonesia. IOP Conf Ser Earth Environ Sci. 752(1). doi:10.1088/1755-1315/752/1/012057. Romdon AS, Kumiyati E, Bahri S, Pramono J. 2014. Kumpulan Deskripsi Varietas Padi. Ed ke-1. Wahab MI, editor. Semarang: Balai Pengkajian Teknologi Pertanian Jawa Tengah. Roohani N, Hurrell R, Kelishadi R, Schulin R. 2013. Zinc and its importance for human health: An integrative review. J Res Med Sci. 18(2):144–157. doi:10.1016/j.foodpol.2013.06.008. Roy D. 2000. Plant Breeding, Analysis and Exploitation of Variation. New Delhi: Narosa Publishing House. Roy SC, Shil P. 2020. Assessment of Genetic Heritability in Rice Breeding Lines Based on Morphological Traits and Caryopsis Ultrastructure. Sci Rep. 10(1):1–17. doi:10.1038/s41598-020-63976-8. Ruskandar A, Pamungkas MA, Rustiati T, S.Kadir T. 2014. Adopsi sebaran varietas unggul dan inovasi pengelolaan tanaman terpadu padi sawah di jawa barat dan jawa tengah. Di dalam: Prosiding Balai Besar Penelitian Tanaman Padi (BB Padi). hlm 1095–1107. https://repository.pertanian.go.id/handle/123456789/13077. Sadeghzadeh B. 2013. A review of zinc nutrition and plant breeding. J Soil Sci Plant Nutr. 13(4):907–927. doi:10.4067/S0718-95162013005000072. Sadimantara GR, Yusuf DN, Febrianti E, Leomo S, Muhidin. 2021. The performance of agronomic traits, genetic variability, and correlation studies for yield and its components in some red rice (Oryza sativa) promising lines. Biodiversitas. 22(9):3994–4001. doi:10.13057/biodiv/d220947. Saha S, Chakraborty M, Padhan D, Saha B, Murmu S, Batabyal K, Seth A, Hazra GC, Mandal B, Bell RW. 2017. Agronomic biofortification of zinc in rice: Influence of cultivars and zinc application methods on grain yield and zinc bioavailability. F Crop Res. 210 January:52–60. doi:10.1016/j.fcr.2017.05.023. Shivay Y, Kumar D, Prasad R. 2016. Interactions of Zinc with Other Nutrients in Soils and Plants-A Review. Indian J Fertil. 12(5):16–26. https://www.researchgate.net/publication/303245814. Silva EO, Bracarense APFRL. 2016. Phytic Acid: From Antinutritional to Multiple Protection Factor of Organic Systems. J Food Sci. 81(6):1357–1362. doi:10.1111/1750-3841.13320. Singh P, Prasad S, Aalbersberg W. 2016. Bioavailability of Fe and Zn in selected legumes, cereals, meat and milk products consumed in Fiji. Food Chem. 207:125–131. doi:10.1016/j.foodchem.2016.03.029. Singh R, Chaudhary B. 2007. Biometrical Methods In Quantitative Genetic Analysis. New Delhi: Kalyani Publisher. Singh SP, Vogel-Mikuš K, Arčon I, Vavpetič P, Jeromel L, Pelicon P, Kumar J, Tuli R. 2013. Pattern of iron distribution in maternal and filial tissues in wheat grains with contrasting levels of iron. J Exp Bot. 64(11):3249–3260. doi:10.1093/jxb/ert160. Sitaresmi T, Suwarno WB, Gunarsih C, Nafisah, Nugraha Y, Sasmita P, Daradjat AA. 2019. Comprehensive stability analysis of rice genotypes through multi location yield trials using PBSTAT-GE. SABRAO J Breed Genet. 51(4):355– 372. Smith, H. H. 1944. Recent Studies on Inheritance of Quantitative Characters in Plants. Botanical Review, 10(6), 349–382. http://www.jstor.org/stable/4353305. Spaggiari M, Dall’asta C, Galaverna G, Bilbao MDDC. 2021. Rice bran by-product: From valorization strategies to nutritional perspectives. Foods. 10(1):1–16. doi:10.3390/foods10010085. Ssentongo P, Ssentongo AE, Ba DM, Ericson JE, Na M, Gao X, Fronterre C, Chinchilli VM, Schiff SJ. 2021. Global, regional and national epidemiology and prevalence of child stunting, wasting and underweight in low- and middle income countries, 2006–2018. Sci Rep. 11(1):1–12. doi:10.1038/s41598-021- 84302-w. Stanfield W. 1983. Theory and Problems of Genetics. Ed ke-2. New York (US): McGraw-Hill. Stomph TJ, Jiang W, Van Der Putten PEL, Struik PC. 2014. Zinc allocation and re allocation in rice. Front Plant Sci. 5 JAN:1–12. doi:10.3389/fpls.2014.00008. Sulaiman AA, Simatupang P, Las I, Hermanto, Kariyasa IK, Syahyuti, Sumaryanto S, Suwandi, Subagyono K. 2017. Sukses Swasembada Indonesia Menjadi Lumbung Pangan Dunia 2045. Ed ke-1. Sudaryanto T, Hermanto, editor. Jakarta: Perpustakaan Sekjen Kementan. http://repository.pertanian.go.id/handle/123456789/8623. Surjaningrum ER, Ambarini TK, Arbi DKA. 2021. Preparing for the first thousand days of life, psychoeducing the bride-to-be as an effort to prevent stunting. Proceding Inter-Islamic Univ Conf Psychol. 1(1):1–4. https://press.umsida.ac.id/index.php/iiucp/article/view/590%0Ahttps://press.u msida.ac.id/index.php/iiucp/article/view/590/442. Susanto U, Barokah U, Hidayatullah A, Satoto S, Swamy M. 2017a. Yield and Zn content of biofortified rice genotypes in an Indonesian rice agro-ecosystem. Nusant Biosci. 9(3):288–294. doi:10.13057/nusbiosci/n090308. Susanto U, Imamuddin A, Samaullah MY, Jamil A, Ali J. 2017b. Keragaan galur galur Green Super Rice pada kondisi sawah tadah hujan saat musim kemarau di Kabupaten Pati. Bul Plasma Nutfah. 23(1):41–50. http://ejurnal.litbang.pertanian.go.id/index.php/bpn/article/view/8002. Susanto U, Rohaeni WR, Barokah U, Swamy M. 2017c. GENETIC VARIABILITY OF YIELD AND Zn CONTENT OF IRRI LINES. Di dalam: Wahyu Y, Wirnas D, Trikoesoemaningtyas, Ritonga A, Marwiyah S, editor. Proceeding of PERIPI-2017 International Seminar. Bogor: PERIPI. hlm 1–9. Susanto U, Rohaeni WR, Johnson SB, Jamil A. 2015. GGE biplot analysis for genotype x environment interaction on yield trait of high Fe content rice genotypes in indonesian irrigated environments. Agrivita. 37(3):265–275. doi:10.17503/Agrivita-2015-37-3-p265-275. Suwarno WB, Sobir, Aswidinnoor H, Syukur M. 2008. PBSTAT: A web-based statistical analysis software for participatory plant breeding. Di dalam: The Committee of ICoMS, editor. Mathematics and Statistics: bridge for academia, business, and government in the entrepreneurial era. The 3rd International Conference on Mathematics and Statistic; 2008 August 5-6. Bogor: IPB: Library of IPB University. hlm 852–858. http://repository.ipb.ac.id/handle/123456789/73862. Swamy BPM, Marathi B, Ribeiro-Barros AIF, Calayugan MIC, Ricachenevsky FK. 2021. Iron Biofortification in Rice: An Update on Quantitative Trait Loci and Candidate Genes. Front Plant Sci. 12 May:1–11. doi:10.3389/fpls.2021.647341. Swamy BPM, Rahman MA, Inabangan-Asilo MA, Amparado A, Manito C, Chadha-Mohanty P, Reinke R, Slamet-Loedin IH. 2016. Advances in breeding for high grain Zinc in Rice. Rice. 9(1):1–16. doi:10.1186/s12284-016-0122-5. Syahri, Somantri RU. 2016. Penggunaan varietas unggul tahan hama dan penyakit mendukung peningkatan produksi padi nasional. J Penelit dan Pengemb Pertan. 35(1):25. doi:10.21082/jp3.v35n1.2016.p25-36. Syukur M., Sujiprihati S, Yunianti. R. 2015. Teknik Pemuliaan Tanaman (Edisi Revisi). 3nd ed. Syukur Muhamad, editor. Jakarta: Penebar Swadaya. Tomkowiak A, Bocianowski J, Kwiatek M, Kowalczewski PŁ. 2020. Dependence of the heterosis effect on genetic distance, determined using various molecular markers. Open Life Sci. 15(1):1–11. doi:10.1515/biol-2020-0001. Trijatmiko KR, Duenãs C, Tsakirpaloglou N, Torrizo L, Arines FM, Adeva C, Balindong J, Oliva N, Sapasap M V., Borrero J, et al. 2016. Biofortified indica rice attains iron and zinc nutrition dietary targets in the field. Sci Rep. 6:1–13. doi:10.1038/srep19792. Trikoesoemaningtyas, Wirnas D, Saragih EL, Rini EP, Sari M, Marwiyah S, Sopandie D. 2017. Kendali genetik karakter morfologi dan agronomi pada tiga populasi Sorgum (Sorghum bicolor ( L .) Moench). J Agron Indones. 45(3):285–291. doi:https://dx.doi.org/10.24831/jai.v45i3.18387. Upadhyay A, Karn SK. 2018. Brown rice: Nutritional composition and health benefits. J Food Sci Technol Nepal. 10 Table 1:47–52. doi:10.3126/jfstn.v10i0.19711. Utasee S, Jamjod S, Lordkaew S, Prom-U-Thai C. 2022. Improve Anthocyanin and Zinc Concentration in Purple Rice by Nitrogen and Zinc Fertilizer Application. Rice Sci. 29(5):435–450. doi:10.1016/j.rsci.2022.07.004. Vaivada T, Akseer N, Akseer S, Somaskandan A, Stefopulos M, Bhutta ZA. 2020. Stunting in childhood: An overview of global burden, trends, determinants, and drivers of decline. Am J Clin Nutr. 112:777S-791S. doi:10.1093/ajcn/nqaa159. Varma CMK, Gouda PK, Saikumar S, Shenoy V, Shashidhar HE, Neelamraju S. 2012. Transgressive segregation for yield traits in Oryza sativa IR58025B X Oryza meridionalis Ng. BC2F3 population under irrigated and aerobic condition. J Crop Sci Biotechnol. 2012(10):231–238. Velu G, Crespo Herrera L, Guzman C, Huerta J, Payne T, Singh RP. 2019. Assessing genetic diversity to breed competitive biofortified wheat with enhanced grain Zn and Fe concentrations. Front Plant Sci. 9 January:1–11. doi:10.3389/fpls.2018.01971. Verma DK, Srivastav PP. 2017. Proximate composition, mineral content and fatty acids analyses of aromatic and non-aromatic Indian rice. Rice Sci. 24(1):21– 31. doi:10.1016/j.rsci.2016.05.005. Wang B, Medapalli R, Xu J, Cai W, Chen X, He JC, Uribarri J. 2013. Effects of a whole rice diet on metabolic parameters and inflammatory markers in prediabetes. ESPEN J. 8(1):15–20. doi:10.1016/j.clnme.2012.11.001. Wang J, Nakazato T, Sakanishi K, Yamada O, Tao H, Saito I. 2004. Microwave digestion with HNO3/H2O2 mixture at high temperatures for determination of trace elements in coal by ICP-OES and ICP-MS. Anal Chim Acta. 514(1):115– 124. doi:10.1016/j.aca.2004.03.040. Wang Y, Meng Y, Ma Y, Liu L, Wu D, Shu X, Pan L, Lai Q. 2021. Combination.of High Zn Density and Low Phytic Acid for Improving Zn Bioavailability in Rice (Oryza stavia L.) Grain. Rice. 14(1):0–11. doi:10.1186/s12284-021- 00465-0. WHO. 2018. Levels and Trends in Child Malnuutrition. Ed ke-2018. Geneva: World Health Organization. https://www.who.int/publications/i/item/9789240025257. WHO. 2019. Biofortification of staple crops. https://www.who.int/elena/titles/biofortification/en/. Widyantoro, Pane H, Jatmiko SY. 2007. Apresiasi Hasil Penelitian Padi 2007. Di dalam: Peningkatan produktivitas padi gogo rancah melalui pendekatan model pengelolaan tanaman terpadu. Subang. hlm 265–282. http://www.litbang.pertanian.go.id/special/padi/bbpadi_2008_p2bn1_19.pdf. Widyastuti Y, Satoto, Rumanti IA. 2013. Pemanfaatan analisis regresi dan AMMI untuk evaluasi stabilitas hasil genotipe padi dan pengaruh interaksi genetik dan lingkungan. Inform Pertan. 22(1):21–28. Wu CY, Lu LL, Yang XE, Feng Y, Wei YY, Hao HL, Stoffella PJ, He ZL. 2010. Uptake, translocation, and remobilization of zinc absorbed at different growth stages by rice genotypes of different Zn densities. J Agric Food Chem. 58(11):6767–6773. doi:10.1021/jf100017e. Xie X, Hu W, Fan X, Chen H, Tang M. 2019. Interactions Between Phosphorus, Zinc, and Iron Homeostasis in Nonmycorrhizal and Mycorrhizal Plants. Front Plant Sci. 10 September:1–15. doi:10.3389/fpls.2019.01172. Xiongsiyee V, Rerkasem B, Veeradittakit J, Saenchai C, Lordkaew S, Prom-u-thai CT. 2018. Variation in Grain Quality of Upland Rice from Luang Prabang Province, Lao PDR. Rice Sci. 25(2):94–102. doi:10.1016/j.rsci.2018.02.002. Yatou O, Aoki H, Aii J, Tanaka H. 2018. Selection of novel non-lethal, low phytic acid mutants and evaluation of their agronomic traits/Mineral Compositions in rice (Oryza sativa). Japan Agric Res Q. 52(1):39–47. doi:10.6090/jarq.52.39. Yin HJ, Gao XP, Stomph TJ, Li LJ, Zhang FS, Zou CQ. 2016. Zinc concentration in rice (Oryza sativa L.) grains and allocation in plants as affected by different zinc fertilization strategies. Commun Soil Sci Plant Anal. 47(6):761–768. doi:10.1080/00103624.2016.1146891. Yoshihara T, Goto F, Shoji K, Kohno Y. 2010. Cross relationships of Cu, Fe, Zn, Mn, and Cd accumulations in common japonica and indica rice cultivars in Japan. Environ Exp Bot. 68(2):180–187. doi:10.1016/j.envexpbot.2009.10.006. Zemolin AEM, Ribeiro ND, Casagrande CR, Da Silva MJ, Arns FD. 2016. Genetic parameters of iron and zinc concentrations in Andean common bean seeds. Acta Sci - Agron. 38(4):439–446. doi:10.4025/actasciagron.v38i4.30652. Zou CQ, Zhang YQ, Rashid A, Ram H, Savasli E, Arisoy RZ, Ortiz-Monasterio I, Simunji S, Wang ZH, Sohu V, et al. 2012. Biofortification of wheat with zinc through zinc fertilization in seven countries. Plant Soil. 361(1–2):119–130. doi:10.1007/s11104-012-1369-2id
dc.identifier.urihttp://repository.ipb.ac.id/handle/123456789/123656-
dc.description.abstractBiofortifikasi padi untuk Zn tinggi menjadi paradigma baru dalam program pencegahan masalah stunting di negara-negara berkembang yang pangan utamanya beras. Studi-studi perlu dilakukan untuk menjadi dasar strategi pemuliaan padi biofortifikasi. Penelitian ini bertujuan untuk uji cepat (skrining) kandungan Zn tinggi pada berbagai populasi persilangan, memperoleh informasi kendali genetik dan kemajuan seleksi karakter Zn, mengidentifikasi potensi perakitan varietas padi dengan hasil dan kandungan Zn tinggi, informasi pola akumulasi kandungan Zn, dan memperoleh materi genetik baru berupa galur harapan turunan padi biofortikasi berkandungan Zn tinggi, stabil, dan adaptif di lahan sawah tadah hujan. Tahapan penelitian terdiri atas: 1) Uji cepat (skrining) kandungan zinc tinggi pada populasi F1 berbagai persilangan berdasarkan analisis X-ray fluorescene; 2) Studi kendali genetik, keragaman, heritabilitas, segregasi transgresif, kemajuan seleksi karakter hasil dan Zn pada beberapa populasi biparental padi biofortifikasi; 3) Studi sebaran dan analisis sidik lintas kandungan Zn galur-galur padi biofortifikasi berdasarkan warna beras pecah kulit; 4) Studi pola akumulasi kandungan Zn pada genotipe Zn biji tinggi, sedang, dan rendah; 5) Kandungan asam fitat galur-galur padi biofortifikasi dan korelasinya dengan karakter Zn, Fe, dan hasil; 6) Analisis GGE karakter kandungan Zn dan hasil tanaman padi pada dua agroekosistem (irigasi dan tadah hujan). Penelitian berhasil memperoleh 9 populasi F1 biparental dan 16 populasi multiple cross dengan kandungan Zn biji lebih tinggi dari Inpari IR Nutri Zinc. Karakter Zn pada populasi hasil persilangan memiliki keragaman genetik sedang luas dengan daya waris (h2 ns) tergolong sedang-tinggi sehingga seleksi dapat dilakukan pada generasi awal. Karakter kandungan Zn biji dikendalikan oleh banyak gen dengan aksi gen aditif. Indeks segregan transgresif tertinggi karakter kandungan Zn diperoleh pada populasi hasil persilangan tetua Zn tinggi berjarak fenotip dekat yakni Inpari IR Nutri Zinc/UG-1. Terdapat potensi diperolehnya varietas padi berkandungan Zn dan daya hasil tinggi pada jenis beras putih maupun hitam. Asam fitat tidak berkorelasi nyata dengan karakter Zn dan hasil. Terdapat pola akumulasi Zn yang berbeda pada organ tanaman antara genotipe Zn tinggi dan Zn rendah-sedang. Genotipe Zn biji tinggi banyak mengakumulasi mineral Zn di biji dan batang dibandingkan di akar sedangkan genotipe Zn biji rendah banyak mengakumulasi Zn di akar dibandingkan biji dan batang. Interaksi GxE berpengaruh sangat nyata terhadap karakter hasil dan Zn biji. Agroekosistem tadah hujan musim kering terindikasi sebagai lingkungan yang paling ideal untuk seleksi galur Zn dan hasil tinggi. Diperoleh galur harapan potensial Zn dan hasil tinggi diantaranya: G5 (BP 35650-1-3), G6 (BP 35650-7-1), G10 (BP 35650-12-1), G13 (BP 35650-16-1), G17 (BP 35650-19-2), G20 (BP 35650-22-3), G24 (BP 35650- 30-1), dan G32 (BP 35650-38-2).id
dc.description.sponsorshipBeasiswa dan dukungan dana diberikan oleh Badan Standarisasi Instrumen Pertanian, Kementerian Pertanian. Dukungan fasilitas kebun percobaan, rumah kaca, dan laboratorium Balai Besar Pengujian Standar Instrumen Padi – Sukamandi, Subang. Serta Program HarvestPlus yang telah menghibahkan mesin X-ray fluerescene (XRF Oxford Supreme8000, USA) kepada BPSI Padi, Kementerian Pertanian.id
dc.language.isoidid
dc.publisherIPB (Bogor Agricultural University)id
dc.titleStudi Fiksasi Karakter Kandungan Zinc Tinggi Pada Populasi Turunan Padi Biofortifikasi Serta Variabilitas Ekspresinya Pada Lahan Tadah Hujanid
dc.title.alternativeStudy of high zinc content fixation in biofortified rice derivative populations and variability of expression on rainfed landid
dc.typeDissertationid
dc.subject.keywordfiksasi, kemajuan seleksi, kendali genetik, Oryza sativa L., pola akumulasi, Znid
Appears in Collections:DT - Agriculture

Files in This Item:
File Description SizeFormat 
cover.pdf
  Restricted Access
Cover472.08 kBAdobe PDFView/Open
full teks.pdf
  Restricted Access
Full text4.02 MBAdobe PDFView/Open
lampiran.pdf
  Restricted Access
Lampiran284.53 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.