Please use this identifier to cite or link to this item: http://repository.ipb.ac.id/handle/123456789/120721
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorAnisa, Rahma-
dc.contributor.advisorAidi, Muhammad Nur-
dc.contributor.advisorNurjanah, Nunung-
dc.contributor.authorYuliana, Elis-
dc.date.accessioned2023-07-04T07:14:42Z-
dc.date.available2023-07-04T07:14:42Z-
dc.date.issued2023-
dc.identifier.urihttp://repository.ipb.ac.id/handle/123456789/120721-
dc.description.abstractWanita hamil berisiko tinggi mengalami anemia, defisiensi besi (DB), dan anemia defisiensi besi (ADB). Selama kehamilan, hal itu dikaitkan dengan berat badan lahir rendah, kelahiran prematur, dan peningkatan risiko kematian perinatal. Kondisi anemia, DB, ADB, dapat diprediksi dengan menggunakan metode regresi logistik multinomial. Namun, metode klasifikasi rentan terhadap data yang tidak seimbang. Salah satu metode yang dapat digunakan untuk mengatasi masalah ketidakseimbangan data adalah Random Over Sampling (ROS). Hasil metode regresi logistik multinomial menunjukkan bahwa faktor yang memengaruhi anemia dan defisiensi besi secara signifikan adalah usia kehamilan, status gizi, riwayat penyakit malaria, pendidikan, frekuensi konsumsi buah, dan frekuensi konsumsi sayuran. Model regresi logistik multinomial memberikan akurasi klasifikasi sebesar 44,559%. Penelitian ini juga menunjukkan bahwa tingkat ketepatan klasifikasi keempat kategori lebih seimbang setelah dilakukan Random Over Sampling.id
dc.description.abstractPregnant women are at high risk of anemia, iron deficiency (ID), and iron deficiency anemia (IDA). During pregnancy, it has been associated with low birth weight, premature delivery, and increased risk of perinatal mortality. Anemia, ID, IDA conditions can be predicted using multinomial logistic regression method. However, the classification method is prone to data imbalance. One method that can be used to overcome the problem of data imbalanced is Random Over Sampling (ROS). The results of multinomial logistic regression method indicated that outcome variable were significantly influanced by gestational age, nutritional status, malaria, education, frequency of fruit and vegetable consumption. Multinomial logistic regression model provided classification accuracy of 44,559%. This study also shows that the accuracy of the classification of the four categories is more balanced after Random Over Sampling.id
dc.language.isoidid
dc.publisherIPB Universityid
dc.titleFaktor-faktor yang Memengaruhi Anemia dan Defisiensi Besi pada Wanita Hamil di Indonesiaid
dc.title.alternativeFactors Influencing Anemia and Iron Deficiency of Pregnant Women in Indonesiaid
dc.typeUndergraduate Thesisid
dc.subject.keywordanemiaid
dc.subject.keywordiron deficiencyid
dc.subject.keywordmultinomial logistic regressionid
dc.subject.keywordpregnant womenid
dc.subject.keywordrandom oversamplingid
Appears in Collections:UT - Statistics and Data Sciences

Files in This Item:
File Description SizeFormat 
G14160042_Cover.pdf
  Restricted Access
Cover2.5 MBAdobe PDFView/Open
G14160042_Elis Yuliana.pdf
  Restricted Access
Fullteks6.99 MBAdobe PDFView/Open
G14160042_Lampiran.pdf
  Restricted Access
Lampiran1.36 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.