Please use this identifier to cite or link to this item: http://repository.ipb.ac.id/handle/123456789/116014
Title: Profil Metabolit dan Kemampuan Tempe Segar, Semangit, dan Bosok dalam Mengendalikan Diabetes Melitus
Other Titles: The Metabolite Profile and Ability of Fresh, Semangit, and Bosok Tempe on Controlling Diabetes Mellitus
Authors: Astawan, Made
Lioe, Hanifah Nuryani
Wresdiyati, Tutik
Abdurrasyid, Zaid
Issue Date: 2022
Publisher: IPB University
Abstract: Tempe merupakan pangan fermentasi kedelai khas Indonesia yang digemari oleh masyarakat. Masyarakat mengenal tiga jenis tempe berdasarkan waktu fermentasinya, yaitu tempe segar, semangit, dan bosok. Tempe segar memiliki penampakan hifa putih dengan biji kuning pucat keabu-abuan dengan waktu fermentasi 2 hari. Tempe semangit yang memiliki hifa yang mulai gelap dengan biji kedelai kuning gelap dengan waktu fermentasi 5 hari. Tempe bosok yang memiliki warna hifa dan biji kedelai yang kehitaman dengan waktu fermentasi 7 hari. Tempe diduga memiliki kemampuan untuk mengendalikan diabetes melitus (DM) dengan mekanisme hipoglikemik (penurunan kadar glukosa darah) dan penurunan stres oksidatif. Tempe memiliki asam amino insulinotropik (leusina, alanina, isoleusina, fenilalanina, lisina, dan arginina), isoflavon aglikon daidzein dan genistein, serta peptida bioaktif. Tempe semangit dan bosok diduga memiliki kemampuan pengendalian DM yang lebih baik dari tempe segar akibat waktu fermentasinya yang lebih panjang. Selain memperpanjang waktu fermentasi, penggunaan kedelai germinasi sebagai bahan baku diperkirakan menjadi salah satu alternatif peningkatan aktivitas hipoglikemik dan antioksidan tempe. Kombinasi penambahan waktu fermentasi dan germinasi kedelai diharapkan dapat menjadi metode alternatif dalam meningkatkan kemampuan tempe dalam pengendalian DM. Pendekatan metabolomik dilakukan untuk dapat mengevaluasi perubahan metabolit pada tempe akibat kombinasi tersebut. Evaluasi ini didukung dengan analisis in vitro dan in vivo untuk mendapatkan informasi mengenai mekanisme pengendalian DM secara lebih komprehensif. Tujuan dari penelitian ini adalah untuk: (1) membandingkan karakteristik fisikokimia tempe segar, semangit, dan bosok dari kedelai germinasi dan non germinasi; (2) mengevaluasi profil metabolit tempe segar, semangit, dan bosok dari kedelai germinasi dan non-germinasi dengan pendekatan metabolomik; (3) mengevaluasi kadar senyawa hipoglikemik dan antioksidan tempe segar, semangit, dan bosok dari kedelai germinasi dan non-germinasi; (4) mengevaluasi aktivitas hipoglikemik dan antioksidan in vitro tempe segar, semangit, dan bosok dari kedelai germinasi dan non-germinasi; (5) mengevaluasi aktivitas hipoglikemik dan antioksidan in vivo tempe segar, semangit, dan bosok dari kedelai germinasi dan non-germinasi; dan (6) mengevaluasi metabolit hipoglikemik dan antioksidan pada tempe berdasarkan hasil metabolomik dan analisis in vitro dan in vivo. Tahap pertama adalah persiapan sampel yang terdiri dari germinasi kedelai, pembuatan tempe, pembuatan tepung tempe, pembuatan ekstrak air, dan pembuatan ekstrak tepung tempe. Sampel dalam bentuk tempe digunakan untuk analisis sifat fisik dan profil metabolitnya. Sampel dalam bentuk tepung tempe digunakan untuk analisis sifat kimia, kadar senyawa hipoglikemik dan antioksidan, dan pengujian in vivo. Sampel dalam ekstrak air digunakan untuk analisis terkait komponen protein. Sampel dalam bentuk ekstrak pekat digunakan untuk analisis in vitro. Penelitian tahap kedua adalah analisis fisikokimia berupa warna, tekstur, proksimat, pH, total asam tertitrasi, kadar protein terlarut, profil bobot molekul peptida, dan asam amino bebas. Pada tahap ini juga dilakukan analisis kadar senyawa hipoglikemik dan antioksidan, yaitu total senyawa fenolik, daidzein, genistein, dan asam amino bebas insulinotropik. Kadar proksimat tempe segar, semangit dan bosok dari kedelai germinasi dan non-germinasi tidak berbeda nyata, kecuali kadar air. Tempe semangit dan bosok memiliki warna yang lebih gelap, tekstur yang lebih keras, keasaman yang lebih rendah, serta kadar peptida berbobot molekul rendah, kadar protein terlarut, dan asam amino bebas yang lebih banyak dari tempe segar. Tempe bosok non-germinasi memiliki kadar senyawa hipoglikemik dan antioksidan paling tinggi di antara tempe lainnya, yaitu senyawa fenolik, termasuk daidzein dan genistein, serta peptida. Penelitian tahap ketiga adalah analisis profil metabolit tempe dengan pendekatan metabolomik tak-tertarget (untargetted) menggunakan instrumen GC MS. Sampel tempe diekstrak dan diderivatisasi sebelum diinjeksikan. Hasil analisis GC-MS berupa intensitas dari metabolit sampel dianalisis dengan analisis multivariat principal component analysis (PCA), dilanjutkan dengan orthogonal projection to latent structure – discriminant analysis (OPLS-DA), untuk identifikasi metabolit dominan dengan software SIMCA. Hasil menunjukkan bahwa penambahan waktu fermentasi pada tempe semangit dan tempe bosok menghasilkan metabolit yang lebih berlimpah. Pengaruh germinasi hanya terlihat pada tempe bosok. Tempe segar didominasi oleh asam amino. Tempe semangit didominasi oleh asam organik dan asam amino. Tempe bosok germinasi lebih didominasi oleh asam amino, sedangkan tempe bosok non-germinasi lebih didominasi oleh asam organik Penelitian tahap ke-empat adalah analisis kemampuan pengendalian DM tempe melalui mekanisme hipoglikemik dan antioksidan, baik in vitro maupun in vivo, menggunakan tikus DM terinduksi streptozotocin (STZ). Penelitian tahap lima adalah identifikasi metabolit tempe dalam pengendalian DM dengan analisis multivariat OPLS (orthogonal projection to latent structure) menggunakan data hasil GC-MS dan analisis in vitro dan in vivo. Tempe memiliki kemampuan mengendalikan DM melalui mekanisme penurunan glukosa darah dan stres oksidatif, serta perbaikan profil lipid darah. Penambahan waktu fermentasi dapat meningkatkan kemampuan tempe dalam mengendalikan DM, sedangkan germinasi kedelai tidak memengaruhi kemampuan tempe secara nyata. Penurunan glukosa darah terjadi dengan mekanisme penghambatan α-amilase dan α-glukosidase serta peningkatan sel-β pankreas dan insulin, yang melibatkan daidzein, genistein, manitol, xylitol, trehalosa, asam 2-aminoadipat, alanina, isoleusina, leusina, dan fenilalanina. Penurunan stres oksidatif dan perbaikan profil lipid darah melibatkan daidzein, genistein, metionina, asam glutamat, asam aspartat, asam sitrat, asam 2- aminoadipat, dan asam nikotinat. Penurunan kadar glukosa darah dapat memperbaiki fungsi hati dan ginjal dan profil hematologi darah. Tempe bosok non-germinasi memiliki kemampuan pengendalian DM paling baik di antara tempe yang lain. Hal ini disebabkan oleh adanya metabolit-metabolit dan peptida yang berperan dalam pengendalian DM yang banyak ditemukan pada tempe ini. Tingginya kandungan metabolit dan peptida yang berperan dalam pengendalian DM disebabkan oleh penambahan waktu fermentasi hingga 7 hari.
Tempe is a typical Indonesian fermented soybean food favored by the public. People recognize three types of tempe based on fermentation time: fresh tempe, semangit, and bosok. Fresh tempe has the appearance of white hyphae with pale grayish-yellow seeds with a fermentation time of 2 days. There is also tempe semangit which has hyphae that begin to darken with dark yellow soybean seeds with a fermentation time of 5 days, and tempe bosok, which has hyphae and black soybean seeds with a fermentation time of 7 days. Tempe have the ability to treat diabetes mellitus (DM) with a hypoglycemic mechanism (lowering blood glucose levels) and reducing oxidative stress. Tempe has insulinotropic amino acids (leucine, alanine, isoleucine, phenylalanine, lysine, and arginine), the aglycone isoflavones daidzein and genistein, as well as bioactive peptides. Semangit and bosok tempe are thought to have better DM control ability than fresh tempe due to their longer fermentation time. In addition to prolonging the fermentation time, the use of germinated soybean as a raw material is estimated to be an alternative to increase tempe's hypoglycemic and antioxidant activity. The combination of the addition of fermentation time and soybean germination is expected to be an alternative method in increasing the ability of tempe to control DM. The metabolomics approach was carried out to evaluate the metabolite changes in tempe due to the combination. This evaluation was supported by in vitro and in vivo analyses to obtain more comprehensive information on DM control mechanisms. The aims of this study were to (1) compare the physicochemical characteristics of fresh, semangit, and bosok tempe from germinated and non germinated soybeans; (2) evaluate the metabolite profiles of fresh, semangit, and bosok tempe from germinated, and non-germinated soybeans using a metabolomic approach; (3) evaluate the content of hypoglycemic and antioxidant compounds of fresh, semangit, and bosok tempe flour from germinated and non-germinated soybeans; (4) evaluate the in vitro activity of hypoglycemic and antioxidant compounds of fresh, semangit, and bosok tempe flour from germinated and non germinated soybeans; (5) evaluate the in vivo hypoglycemic and antioxidant activity of fresh, semangit, and bosok tempe flour from germinated and non germinated soybeans; and (5) evaluate hypoglycemic and antioxidant metabolites found in tempe based on metabolomic results and in vitro and in vivo analysis. The first stage of this research was sample preparation which consisted of soybean germination, making tempe, making tempe flour, making water-soluble tempe flour, and making tempe flour extract. Samples in the form of tempe were used for the analysis of physical properties and metabolite profiles. Samples in the form of tempe flour were used for the analysis of chemical properties, the content of hypoglycemic and antioxidant compounds, and in vivo testing. Samples in the form of water-soluble flour used for analysis related to protein components. Samples in the form of extracts used for in vitro analysis. The research's second stage was analyzing physicochemical properties in the form of color, texture, proximate, pH, titratable acidity, dissolved protein content, peptide molecular weight profile, and free amino acids. At this stage, an analysis of hypoglycemic and antioxidant compounds was also carried out, namely total phenolic compounds, daidzein, genistein, and insulinotropic free amino acids. The results of this study showed that the proximate levels of fresh, semangit, and bosok tempe from germinated and non-germinated soybeans were not significantly different except for water content. Semangit and bosok tempe have a darker color, harder texture, lower acidity, lower molecular weight peptide content, protein content, and free amino acids than fresh tempe. Bosok non-germinated tempe had the highest levels of hypoglycemic compounds and antioxidants among other tempe, namely daidzein, genistein, phenolic compounds, insulinotropic free amino acids, and peptide. The third stage of the study was the analysis of the metabolite profile of tempe with an untargeted metabolomics approach using the GC-MS instrument. Tempe samples were extracted and derivatized before being injected. The result of intensity of metabolite from GC-MS was analysed by principal component analysis (PCA), followed by orthogonal projection to latent structure – discriminant analysis (OPLS-DA), to identify dominant metabolite using SIMCA software. The results showed that adding fermentation time in tempe semangit and tempe bosok produced more abundant metabolites. The effect of germination was only seen in tempe bosok. Fresh tempe is dominated by amino acid. Semangit tempe was dominated by organic acids and amino acids. Germinated bosok tempe was dominated by amino acids, while non-germinated bosok tempe was dominated by organic acids. The fourth stage of the study was to analyze the ability to control tempe DM through hypoglycemic and antioxidant mechanisms, both in vitro and in vivo, using streptozotocin (STZ) induced DM rats. The fifth phase of the research was the identification of tempe metabolites in DM control using OPLS (orthogonal projection to latent structure) multivariate analysis using GC-MS results and in vitro and in vivo analysis. The results show that tempe could control DM through the mechanism of reducing blood glucose and oxidative stress, as well as improving blood lipid profiles. The addition of fermentation time could increase the ability of tempe to control DM, while soybean germination did not significantly affect the ability of tempe. The decrease in blood glucose occurs by inhibiting mechanisms of α-amylase and α-glucosidase and an increase in pancreatic β-cells and insulin, involving daidzein, genistein, mannitol, xylitol, trehalose, 2-aminoadipic acid, alanine, isoleucine, leucine, and phenylalanine. Reducing oxidative stress and improving blood lipid profiles involves daidzein, genistein, methionine, glutamic acid, aspartic acid, citric acid, 2-aminoadipat acid and nicotinic acid. Reducing blood glucose levels can improve liver and kidney function and hematological blood profile. Non-germinated bosok tempe had the best DM control ability among other tempe due to the presence of metabolites and peptides that play a role in controlling DM, commonly found in this tempe. The high content of metabolites and peptides that control DM is caused by adding a fermentation time of up to 7 days.
URI: http://repository.ipb.ac.id/handle/123456789/116014
Appears in Collections:DT - Agriculture Technology

Files in This Item:
File Description SizeFormat 
Cover, Lembar Pernyataan, Abstrak, Lembar Pengesahan, Prakata, Daftar Isi.pdf
  Restricted Access
Cover (Pembatasan)516.04 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.