Please use this identifier to cite or link to this item: http://repository.ipb.ac.id/handle/123456789/114908
Title: Rancang Bangun Model Sistem Rantai Pasok Agroindustri Cangkang Kelapa Sawit yang Berkelanjutan
Other Titles: A Design of Sustainable Palm Oil Shell Agroindustry Supply Chain System
Authors: Arkeman, Yandra
Romli, Muhammad
Mulyati, Heti
Norita, Defi
Issue Date: 2022
Publisher: IPB University
Abstract: Cangkang sawit merupakan limbah dari hasil pengolahan minyak kelapa sawit yang belum termanfaatkan secara optimal. Cangkang tersebut adalah salah satu sumber biomassa yang dapat diolah menjadi arang cangkang sawit atau Palm Kernel Shell Charcoal (PKSC). PKSC banyak dimanfaatkan untuk menjadi kokas dan batubara. Jika dibandingkan solar dan batubara, PKSC memerlukan biaya yang lebih rendah, memiliki dampak lingkungan rendah dan ketersediaan cangkang sawit melimpah. Arang cangkang sawit digunakan oleh industri karbon aktif, briket hingga peleburan baja. Karbon aktif dapat digunakan sebagai penghilang warna dan bau pada industri minuman, penyulingan minyak, pembersih warna dan bau pada pengolahan air, penghilangan zat warna pada industri gula, pengambilan kembali pelarut, penghilangan sulfur, gas beracun dan bau busuk gas pada pemurnian gas, serta sebagai katalisator. Pemanfaatan secara optimal cangkang sawit menjadi suatu produk yang bernilai tambah tinggi membutuhkan manajemen rantai pasok berkelanjutan dengan mempertimbangkan aspek lingkungan, ekonomi dan sosial. Tantangan dalam mendesain rantai pasok berkelanjutan adalah memodelkan proses bisnis rantai pasok cangkang sawit yang rumit menjadi suatu model proses bisnis yang mudah dipahami. Desain proses tersebut perlu mempertimbangkan ketidakpastian aliran uang, informasi, dan barang dari pemasok hingga konsumen akhir, pengolahan limbah cangkang sawit menjadi bioenergi, karbon aktif, katalisator dan produk potensial lainnya serta mengkaji dampaknya terhadap aspek keberlanjutan. Selanjutnya menentukan tipe desain rantai pasok efisien untuk mendukung kebijakan berbagai aspek rantai pasok pengolahan cangkang sawit. Penelitian ini juga merancang kelembagaan rantai pasok sesuai aspek keberlanjutan yaitu ekonomi, sosial dan lingkungan. Model matematika tiga tujuan yang diselesaikan dengan Hybrid NSGA-II dan RL menghasilan Pareto Optimum 11 solusi. Jika dibandingkan dengan penelitian sejenis yang dilakukan oleh Nayeri et al 2020. Hasil dari optimasi ini memberikan diversitas Pareto optimum yang lebih beragam yaitu sejumlah 11 titik. Nilai cost lebih kecil yaitu maksimum 874 507 730 dan jumlah karbon yang diolah dari cangkang sawit lebih banyak yaitu minimum 159.23 per hari dengan total serapan tenaga kerja maksimal 1 684 dan minimum 1 608 orang. Secara logis dari penelitian yang dilakukan Nayeri tersebut nilai yang dihasilkan dari perhitungan hybrid NSGA-III dan Reinforcement Learning ini telah terverifikasi. Model yang didesain pada penelitian ini tidak akan berhasil tanpa adanya dukungan desain kelembagaan. Penelitian ini menggunakan pendekatan ISM fuzzy MICMAC untuk menjawab tantangan ketidakpastian interaksi pada kelembagaan. Secara keseluruhan hasil metode ISM. Desain kelembagaan pada ISM fuzzy MICMAC menghasilkan interaksi antar aktor sesuai kepentingannya. Hasil analisis fuzzy MICMAC terhadap elemen kebutuhan bahwa sub elemen B4 (adanya jaminan kualitas dan kuantitas cangkang sawit) dan B7 (adanya jaminan kontinuitas produksi olahan cangkang sawit) berada pada sektor independent sehingga mempunyai daya dan dorong besar terhadap sistem walaupun ketergantungan pada sistem hampir tidak ada. Sub elemen kebutuhan B1 (tersedianya pergudangan/penyimpanan cangkang sawit) memiliki kekuatan pendorong yang di bawah sub elemen B2 (tersedianya dana untuk investasi tempat penampungan cangkang sawit), B5 (adanya peraturan yang mengatur pelaksanaan sistem ditingkat pemerintahan nasional) dan B6 (adanya peningkatan pendapatan pabrik PKS dari pengolahan cangkang sawit) namun memiliki sedikit ketergantungan dalam sistem. Sementara sub kebutuhan B3 (tersedianya dana untuk sarana dan prasarana logistik), B8 (pembinaan pelaku dalam rantai pasok agroindustri cangkang sawit), B9 (adanya pengembangan teknologi pengolahan cangkang sawit) dan B10 (adanya peraturan pelaksanaan sistem rantai pasok cangkang sawit) berada pada ketergantungan yang besar pada sistem.
Palm shells are waste from palm oil processing that has not been utilized optimally. The shell is one source of biomass that can be processed into palm kernel shell charcoal or called Palm Kernel Shell Charcoal (PKSC). PKSC is widely used to make coke and coal. When compared to diesel and coal, they require lower costs, and have a small environmental impact and the availability of abundant palm shells. Palm shell charcoal is used by the activated carbon industry, briquettes to steel smelting. Activated carbon can be used as a color and odor remover in the beverage industry, oil refining, color and odor cleaning in water treatment, dye removal in the sugar industry, solvent recovery, sulfur removal, toxic gases and gas odors in gas purification, as well as as an additive. catalyst. Optimal utilization of palm kernel shells into a product with high added value requires sustainable supply chain management with consideration of environmental, economic and social impacts. The design of supply chain sustainability needs to consider several economic, social and environmental aspects. The design problem that becomes a challenge is modeling a complex palm shell supply chain business process into a business process model that is easy to understand. The design of the process needs to consider the uncertainty of the flow of money, information, and goods from suppliers to final consumers, processing palm shell waste into bioenergy, activated carbon, catalysts and other potential products and assessing their impact on sustainability aspects, namely economic, environmental and social. Next, determine the type of efficient supply chain design to support policies on various aspects of the supply chain for palm shell processing. Designing a supply chain performance measurement on sustainability aspects, namely economic, social and environmental. So that it can be a new insight for industry, government and academia in responding to the challenges of supply chain sustainability for palm oil processing. The three-objective mathematical model (Formulation 1-6) solved by Hybrid NSGA-III and RL yields 11 Pareto Optimum solutions. When compared with similar research conducted by Nayeri et al 2020. The results of this optimization provide a more diverse Pareto optimum diversity of 11 points (from Table 2). The cost value is smaller, namely a maximum of 874 507 730 and the amount of carbon processed from palm shells more, namely a minimum of 159.23 per day with a maximum total employment of 1 684 and a minimum of 1 608 people. Logically, from the research conducted by Nayeri, the value generated from the calculation of the hybrid NSGA-III and Reinforcement Learning has been verified. The model designed in this study will not succeed without institutional design support. This study uses the ISM MICMAC approach to answer the uncertainty of institutional interactions. Overall the results of the ISM method. The institutional design of the MICMAC ISM produces interactions between actors according to their interests. The results of the MICMAC analysis of the need elements show that sub-elements B4 (the guarantee of quality and quantity of palm shells) and B7 (the guarantee of continuity of production of processed palm shells) are in the independent sector so that they have great power and thrust on the system even though there is almost no dependence on the system. . The sub-element needs B1 (availability of warehousing/storage of palm shells) has a driving force under sub-element B2 (availability of funds for investment in palm shell storage), B5 (the existence of regulations governing the implementation of the system at the national government level) and B6 (an increase in mill revenues PKS from palm shell processing) but has little dependency in the system. Meanwhile, the sub-needs for B3 (availability of funds for logistics facilities and infrastructure), B8 (guidance of actors in the supply chain of palm shell agroindustry), B9 (the development of palm shell processing technology) and B10 (the existence of implementing regulations for the palm shell supply chain system) are dependent on big on the system.
URI: http://repository.ipb.ac.id/handle/123456789/114908
Appears in Collections:DT - Agriculture Technology

Files in This Item:
File Description SizeFormat 
Cover Disertasi Defi.pdf
  Restricted Access
Cover4.59 MBAdobe PDFView/Open
F361160201_Defi Norita.pdf
  Restricted Access
Fullteks10.29 MBAdobe PDFView/Open
Lampiran Disertasi Defi.pdf
  Restricted Access
Lampiran5.23 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.