Please use this identifier to cite or link to this item:
http://repository.ipb.ac.id/handle/123456789/112907Full metadata record
| DC Field | Value | Language |
|---|---|---|
| dc.contributor.advisor | Mas'oed, Teduh Wulandari | - |
| dc.contributor.advisor | Guritman, Sugi | - |
| dc.contributor.author | Auliasari, Devi | - |
| dc.date.accessioned | 2022-07-28T02:13:05Z | - |
| dc.date.available | 2022-07-28T02:13:05Z | - |
| dc.date.issued | 2022 | - |
| dc.identifier.uri | http://repository.ipb.ac.id/handle/123456789/112907 | - |
| dc.description.abstract | Matriks skew circulant adalah matriks persegi yang entrinya bergeser satu kolom secara berurutan ke kanan dan semua entri yang berada di bawah diagonal utama akan bernilai negatif, sehingga untuk mengetahui seluruh entri matriks skew circulant dapat dilihat dari salah satu baris dari matriks tersebut. Entri-entri pada matriks skew circulant dapat menggunakan entri dengan berbagai barisan bilangan, salah satunya adalah bilangan Pell-Lucas. Pada karya ilmiah ini diformulasikan determinan dan invers matriks skew circulant dengan entri bilangan Pell-Lucas. Pembuktian formulasi determinan matriks skew circulant dengan entri bilangan Pell-Lucas diperoleh dari penerapan serangkaian operasi baris dasar sehingga diperoleh matriks segitiga atas. Sedangkan, formulasi inversnya diperoleh dengan membuat matriks-matriks representasi dari hasil serangkaian operasi baris dasar dan operasi kolom dasar. | id |
| dc.description.abstract | Skew circulant matrix is a square matrix whose entries are shifted one column sequentially to the right and all entries below the main diagonal will be negative, so to find out all the entries of the skew circulant matrix can be seen from any row of the matrix. The entries in the skew circulant matrix can be filled in various sequences of numbers such as Pell-Lucas numbers. In this research, the determinant and inverse of the skew circulant matrix with Pell-Lucas numbers entries are formulated. The proof of the determinant formulation of the skew circulant matrix with Pell-Lucas numbers entries is explained by applying a series of elementary row operations to get the upper triangular matrix. While the proof of the inverse formulation is explained by constructing representational matrices of the results of the series of elementary row operations and elementary column operations. | id |
| dc.language.iso | id | id |
| dc.publisher | IPB University | id |
| dc.title | Determinan dan Invers Matriks Skew Circulant dengan Entri Bilangan Pell-Lucas | id |
| dc.type | Undergraduate Thesis | id |
| dc.subject.keyword | determinant | id |
| dc.subject.keyword | inverse | id |
| dc.subject.keyword | Pell-Lucas number | id |
| dc.subject.keyword | skew circulant matrix | id |
| Appears in Collections: | UT - Mathematics | |
Files in This Item:
| File | Description | Size | Format | |
|---|---|---|---|---|
| Cover.pdf Restricted Access | Cover | 997.48 kB | Adobe PDF | View/Open |
| Fullteks.pdf Restricted Access | Fullteks | 1.16 MB | Adobe PDF | View/Open |
| Lampiran.pdf Restricted Access | Lampiran | 486.52 kB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.