Please use this identifier to cite or link to this item: http://repository.ipb.ac.id/handle/123456789/112200
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorMangku, I Wayan-
dc.contributor.advisorArdana, Ngakan Komang Kutha-
dc.contributor.authorHermawan, Andri-
dc.date.accessioned2022-06-28T23:52:37Z-
dc.date.available2022-06-28T23:52:37Z-
dc.date.issued2022-
dc.identifier.urihttp://repository.ipb.ac.id/handle/123456789/112200-
dc.description.abstractDalam dunia investasi, saham merupakan salah satu instrumen pasar keuangan yang paling populer karena dapat memberikan keuntungan yang besar bagi para investor. Akan tetapi data harga saham bersifat tidak stasioner dan non linear, serta perubahan dari harga saham yang relatif cepat dari waktu ke waktu. Oleh karena itu, diperlukan metode yang mampu memprediksi pergerakan harga saham untuk membantu para investor dalam mengambil keputusan kapan sebaiknya saham dijual atau tetap dipertahankan. Tujuan dari penelitian ini adalah membuat model prediksi harga saham INDF dan MYOR serta melakukan prediksi satu periode selanjutnya pada kedua perusahaan tersebut dengan menggunakan metode Support Vector Regression dan Algoritma Grid Search. Hasil penelitian menunjukkan model prediksi terbaik untuk data saham INDF diperoleh nilai MAPE dan R^2 pada data testing berturut-turut sebesar 5.570% dan 79.9%, sedangkan untuk data saham MYOR diperoleh nilai MAPE dan R^2 pada data testing berturut-turut sebesar 2.954% dan 96%. Hasil penelitian juga menunjukkan prediksi harga saham INDF dan MYOR untuk satu periode selanjutnya (31 Desember 2021) berturut-turut sebesar Rp 6326.88/lembar dan Rp 2039.31/lembar.id
dc.description.abstractIn the investment world, stocks are one of the most popular financial market instruments because they can provide large returns for investors. However, stock price data is non-stationary and non-linear, and changes in stock prices are relatively fast from time to time. Therefore, it is needed a method that is able to predict stock price movements to assist investors in making decisions about when stock prices should be sold or maintained. The purpose of this study is to introduce a stock price prediction model for INDF and MYOR and to predict one next period stock prices for the two companies using the Support Vector Regression method and the Grid Search Algorithm. The results showed that, the best prediction model for INDF stock data having MAPE and R^2 for the testing data are 5.570% and 79.9% respectively, while for the MYOR stock data, the MAPE and R^2 values obtained for the testing data were 2,954% and 96% respectively. The results also show that the stock price predictions for INDF and MYOR for one next period (December 31, 2021) are Rp. 6326.88/share and Rp. 2039.31/share, respectively.id
dc.language.isoidid
dc.publisherIPB Universityid
dc.titleAnalisis Support Vector Regression (SVR) dengan Algoritma Grid Search dalam Memprediksi Harga Sahamid
dc.title.alternativeSupport Vector Regression (SVR) Analysis with Grid Search Algorithm in Predicting Stock Pricesid
dc.typeUndergraduate Thesisid
dc.subject.keywordGrid Searchid
dc.subject.keywordstock pricesid
dc.subject.keywordpredictionsid
dc.subject.keywordSupport Vector Regressionid
Appears in Collections:UT - Mathematics

Files in This Item:
File Description SizeFormat 
Cover.pdf
  Restricted Access
Cover430.5 kBAdobe PDFView/Open
Andri Hermawan.pdf
  Restricted Access
Fullteks2.61 MBAdobe PDFView/Open
Lampiran.pdf
  Restricted Access
Lampiran461.34 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.