Please use this identifier to cite or link to this item:
http://repository.ipb.ac.id/handle/123456789/110785Full metadata record
| DC Field | Value | Language |
|---|---|---|
| dc.contributor.advisor | Siregar, Vincentius Paulus | - |
| dc.contributor.advisor | Pasaribu, Riza Aitiando | - |
| dc.contributor.author | Krisdianti | - |
| dc.date.accessioned | 2022-01-25T03:53:41Z | - |
| dc.date.available | 2022-01-25T03:53:41Z | - |
| dc.date.issued | 2022-01-24 | - |
| dc.identifier.uri | http://repository.ipb.ac.id/handle/123456789/110785 | - |
| dc.description.abstract | Wilayah pesisir Teluk Banten memiliki potensi sumberdaya alam kelautan dan perikanan. Potensi tersebut suatu saat bisa rusak (degradasi) atau hilang akibat dampak pembangunan yang tidak memperhatikan aspek lingkungan pesisir. Pemantauan penggunaan lahan dapat dilakukan melalui teknologi penginderaan jauh menggunakan Citra Sentinel-2A. Tujuan penelitian ini yaitu mengetahui kemampuan citra Sentinel-2A dalam pemetaan penggunaan lahan di Kawasan Pesisir Teluk Banten menggunakan algoritma Maximum Likelihood (MLH) dan Support Vector Machine (SVM). Hasil klasifikasi penggunaan lahan dari citra sentinel-2A menghasilkan 6 kelas yaitu, badan air, mangrove, pemukiman, sawah, tambak, dan tanah terbuka. Hasil yang didapatkan dari trial and error pada pengolahan data, dengan algoritma Multiresolution Segmentation mendapatkan nilai scale 60 karena dapat memberikan hasil segmentasi yang cukup baik. Klasifikasi berbasis piksel dengan algoritma MLH dan berbasis objek dengan algoritma SVM, mampu memetakan penggunaan lahan dengan tingkat akurasi klasifikasi, masing-masing sebesar 75,3% dengan algoritma MLH dan sebesar 77,4% dengan SVM. Nilai Kappa masing-masing adalah 0,69 dan 0,72. Nilai perbandingan Z-test dari kedua klasifikasi berbasis piksel dengan objek (MLH vs SVM) yaitu 0,48 yang berarti keduanya tidak berbeda signifikan. | id |
| dc.description.abstract | The coastal area of Banten Bay had the potential for marine and fisheries resources. This potential could one day be damaged (degraded) or lost due to the impact of development that did not pay attention to aspects of the coastal environment. Land use monitoring could be done through remote sensing technology with the use Sentinel-2A Imagery. The purpose of this study was to determine the ability of Sentinel-2A imagery in mapping land use in the Banten Bay Coastal Area using the Maximum Likelihood (MLH) and Support Vector Machine (SVM) algorithms. The land use classification results from sentinel-2A imagery produced six classes, (water bodies, mangroves, residence, rice fields, ponds, and open land). Pixel-based classification with the MLH algorithm and object-based with the SVM algorithm could map land use with an accuracy of 75.3% for MLH algorithm and 77.4% for SVM algorithm. Kappa values were 0.69 (MLH) and 0.72 (SVM). The Z-test comparison value of the two pixel-based classifications with objects (MLH vs SVM) was 0.48, which means that the two were not significantly different. | id |
| dc.language.iso | id | id |
| dc.publisher | IPB University | id |
| dc.title | Pemanfaatan Teknologi Pengindraan Jauh untuk Pemetaan Penggunaan Lahan di Wilayah Pesisir Teluk Banten | id |
| dc.title.alternative | Utilization of Remote Sensing Technology for Land Use Mapping in the Coastal Area Banten Bay | id |
| dc.type | Undergraduate Thesis | id |
| dc.subject.keyword | Land Use | id |
| dc.subject.keyword | MLH | id |
| dc.subject.keyword | Remote Sensing | id |
| dc.subject.keyword | SVM | id |
| Appears in Collections: | UT - Marine Science And Technology | |
Files in This Item:
| File | Description | Size | Format | |
|---|---|---|---|---|
| Cover.pdf Restricted Access | Cover | 2.29 MB | Adobe PDF | View/Open |
| FinalSkripsi_Krisdianti-signed.pdf Restricted Access | Fullteks | 9.59 MB | Adobe PDF | View/Open |
| Lampiran.pdf Restricted Access | Lampiran | 2.72 MB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.