Please use this identifier to cite or link to this item: http://repository.ipb.ac.id/handle/123456789/110058
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorPriandana, Karlisa-
dc.contributor.advisorHardhienata, Medria Kusuma Dewi-
dc.contributor.authorManullang, Michael Julyus Christopher-
dc.date.accessioned2021-12-01T06:13:22Z-
dc.date.available2021-12-01T06:13:22Z-
dc.date.issued2021-
dc.identifier.urihttp://repository.ipb.ac.id/handle/123456789/110058-
dc.description.abstractPenelitian ini mengembangkan algoritme koordinasi multi-UAV untuk pemantauan lahan sawah menggunakan algoritme Ant Colony Optimization (ACO) dan 2-opt. Dalam penelitian ini, citra satelit Sentinel-2 berupa citra sawah digunakan sebagai lingkungan simulasi untuk sistem multi-UAV. Setelah algoritme koordinasi multi-UAV dikembangkan, pengujian dilakukan untuk melihat performa algoritme dari segi jarak optimum dan waktu komputasi. Hasil menunjukkan bahwa rata-rata jarak lintasan UAV yang diperoleh dengan algoritme yang dikembangkan menurun sebesar 2% dibandingkan dengan hanya menggunakan algoritme ACO. Hasil penelitian menunjukkan bahwa penggunaan algoritme 2-opt tidak meningkatkan waktu komputasi secara signifikan. Selain itu, hasil penelitian juga menunjukkan bahwa algoritme ACO dan 2-opt yang dikembangkan dalam beberapa kasus yang diujikan dapat menghasilkan lintasan yang lebih pendek daripada algoritme ACO saja.id
dc.description.abstractThis study developed a multi-UAV coordination algorithm for monitoring paddy fields using Ant Colony Optimization (ACO) and 2-opt algorithms. In this study, Sentinel-2 satellite images in the form of paddy fields were used as a simulation environment for multi-UAV system. After the multi-UAV coordination algorithm was developed, tests were carried out to see the performance of the algorithm in terms of optimum distance and computational time. Results show that the average UAV trajectory distance obtained with the developed algorithm decreased by 2% compared to the original ACO algorithm alone. Results showed that the use of 2-opt algorithm did not significantly increase the computational time. In addition, the results also show that the ACO and 2-opt algorithms developed in several tested cases can provide a shorter trajectory than the ACO algorithm alone.id
dc.language.isoidid
dc.publisherIPB Universityid
dc.titleKoordinasi Multi-UAV untuk Pemantauan Lahan Sawah menggunakan Algoritme Ant Colony Optimization (ACO) dan 2-Optid
dc.title.alternativeMulti-UAV Coordination for Monitoring Paddy Fields using Ant Colony Optimization (ACO) and 2-Opt Algorithmsid
dc.typeThesisid
dc.subject.keywordAnt Colony Optimizationid
dc.subject.keywordcitra Sentinel-2id
dc.subject.keywordmulti-UAVid
dc.subject.keywordpemantauanid
dc.subject.keyword2-optid
Appears in Collections:MT - Mathematics and Natural Science

Files in This Item:
File Description SizeFormat 
Cover.pdf
  Restricted Access
Cover442.65 kBAdobe PDFView/Open
Tesis - Michael Julyus Christopher Manullang (G651190311).pdf
  Restricted Access
Fullteks7.35 MBAdobe PDFView/Open
Lampiran.pdf
  Restricted Access
Lampiran935.25 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.