Please use this identifier to cite or link to this item: http://repository.ipb.ac.id/handle/123456789/109387
Title: Analisis Model Mangsa-Pemangsa Leslie-Gower dengan Adanya Faktor Ketakutan dan Perlindungan Mangsa
Authors: Kusnanto, Ali
Sianturi, Paian
Riyanto
Issue Date: 2021
Publisher: IPB University
Abstract: Dalam tulisan ini dipelajari model mangsa-pemangsa Leslie-Gower dengan adanya faktor ketakutan dan perlindungan mangsa yang dikembangkan oleh Wang et al. (2019). Dari model ini, terdapat empat titik tetap. Kestabilan titik tetap pertama bersifat simpul takstabil, kestabilan titik tetap kedua bersifat sadel, titik tetap ketiga dapat bersifat sadel atau simpul stabil, dan titik tetap keempat dapat bersifat spiral takstabil, spiral stabil, sadel, atau simpul stabil bergantung nilai parameter faktor ketakutan dan perlindungan mangsa. Adanya faktor ketakutan dan perlindungan mangsa dapat mempengaruhi populasi mangsa pemangsa. Semakin besar tingkat faktor ketakutan, maka populasi akan stabil pada titik tetap E_2, populasi mangsa akan semakin menurun menuju kepunahan. Semakin besar tingkat perlindungan mangsa, maka populasi akan stabil pada titik tetap E_3, populasi mangsa akan semakin meningkat dan terhindar dari kepunahan. Bifurkasi Hopf terjadi pada titik tetap keempat, di mana terjadi perubahan kestabilan dari spiral takstabil menjadi spiral stabil yang berakibat munculnya limit cycle.
In this manuscript a mathematical predator-prey model of Leslie-Gower with the fear factor and the prey refuge that was previously investigated by Wang et al. (2019) is studied. In this model, there are four fixed points. Stability of the first fixed point is unstable node, stability of the second fixed point is saddle, the third fixed point could be a saddle or stable node, and the fourth fixed point could be an unstable spiral, stable spiral, saddle or stable node depending on two parameters of the fear factor and the prey refuge. The existence of fear factor and the prey refuge can influence the predator-prey populations. As the level of fear factors increases, the population will be stable at the fixed point E_2, prey population will decline towards extinction. As the level of prey refuge increases, the population will be stable at the fixed point E_3, prey population increases and avoids extinction. Hopf bifurcation occurs on the fourth fixed point, where the unstable spiral changed into a stable spiral which results in the emergence of a limit cycle.
URI: http://repository.ipb.ac.id/handle/123456789/109387
Appears in Collections:UT - Mathematics

Files in This Item:
File Description SizeFormat 
Cover, Lembar Pengesahan, Prakata, Daftar Isi.pdf
  Restricted Access
Cover1.26 MBAdobe PDFView/Open
G54170025_Riyanto.pdf
  Restricted Access
Fullteks2.29 MBAdobe PDFView/Open
Lampiran.pdf
  Restricted Access
Lampiran2.51 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.