Please use this identifier to cite or link to this item: http://repository.ipb.ac.id/handle/123456789/109274
Title: Penerapan Binary Particle Swarm Optimization Support Vector Machine untuk Klasifikasi Komentar Cyberbullying di Instagram
Other Titles: Application of Binary Particle Swarm Optimization Support Vector Machine for Cyberbullying Comments Classification on Instagram
Authors: Sulvianti, Itasia Dina
Dito, Gerry Alfa
Fortuna, Dewi
Issue Date: 2021
Publisher: IPB University
Abstract: Kebebasan berpendapat pada media sosial adakalanya tidak sesuai dengan etika berkomunikasi sehingga mengarah kepada tindakan cyberbullying. Instagram merupakan media sosial yang paling umum digunakan dalam melakukan cyberbullying. Tindakan cyberbullying perlu diminimalisasi karena menimbulkan banyak dampak negatif. Salah satu cara yang dapat dilakukan yaitu dengan mengidentifikasi komentar cyberbullying agar komentar tersebut dapat dihapus secara otomatis. Metode yang digunakan pada penelitian ini yaitu klasifikasi teks menggunakan algoritme Support Vector Machine (SVM) dengan penerapan seleksi fitur menggunakan metode optimasi Binary Particle Swarm Optimization (BPSO). Penelitian ini bertujuan untuk menyusun model klasifikasi komentar cyberbullying serta membandingkan performa kinerja model klasifikasi dengan dan tanpa penerapan seleksi fitur. Hasil penelitian menunjukkan bahwa pemodelan dengan SVM menghasilkan performa klasifikasi yang cukup akurat lebih dari 72% untuk semua performa klasifikasi pada setiap nilai C. Penggunaan BPSO untuk seleksi fitur dapat meningkatkan performa klasifikasi dengan meningkatnya nilai akurasi dan spesifisitas. Akan tetapi untuk kasus pada penelitian ini dipilih model tanpa seleksi fitur pada C = 0,1 karena memiliki nilai sensitivitas paling besar dengan akurasi dan spesifisitas yang cukup baik sehingga dapat mendeteksi komentar cyberbullying secara lebih akurat.
Freedom of speech on social media is sometimes inappropriate with the ethics of communicating and has led to cyberbullying. Instagram is the most commonly used social media in cyberbullying. Cyberbullying needs to be minimized because it has many adverse effects. One way that can be done is by identifying cyberbullying comments so those comments can be deleted automatically. The method used in this study is text classification using Support Vector Machine (SVM) algorithm with the application of Binary Particle Swarm Optimization (BPSO) optimization method as features selection. The study aims to build a cyberbullying comments classification model and compare the classification model performance with and without the application of features selection. The experimental results showed that modeling with SVM produces a reasonably accurate classification performance over 72% for all classification performance on each C. The application of BPSO for features selection can improve classification performance by increasing accuracy and specificity. However, the model without features selection on C = 0,1 is chosen in this study case because it has the highest sensitivity with good accuracy and specificity that can detect cyberbullying comments more accurately.
URI: http://repository.ipb.ac.id/handle/123456789/109274
Appears in Collections:UT - Statistics and Data Sciences

Files in This Item:
File Description SizeFormat 
Cover.pdf
  Restricted Access
Cover1.07 MBAdobe PDFView/Open
G14170004_Dewi Fortuna.pdf
  Restricted Access
Full Text1.46 MBAdobe PDFView/Open
Lampiran.pdf
  Restricted Access
Lampiran947 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.