View Item 
      •   IPB Repository
      • Dissertations and Theses
      • Undergraduate Theses
      • UT - Faculty of Mathematics and Natural Sciences
      • UT - Computer Science
      • View Item
      •   IPB Repository
      • Dissertations and Theses
      • Undergraduate Theses
      • UT - Faculty of Mathematics and Natural Sciences
      • UT - Computer Science
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.

      Perbandingan algoritme centroid contour gradient dan centroid contour distance untuk pengenalan bentuk daun

      Thumbnail
      View/Open
      Full Text (39.33Mb)
      Date
      2014
      Author
      Hasim, Abdurrasyid
      Herdiyeni, Yeni
      Metadata
      Show full item record
      Abstract
      Penelitian ini membandingkan algoritme CCG (Centroid Contour Gradient) dan CCD (Centroid Contour Distance) untuk ekstraksi fitur dalam pengenalan bentuk daun. CCG dan CCD adalah algoritme untuk merepresentasikan bentuk dengan pendekatan berbasis kontur (contour-based). CCG menghitung nilai gradient antar titik sepanjang tepi daun pada setiap interval sudut tertentu sedangkan CCD menghitung jarak titik tengah terhadap titik-titik tepi. Bentuk daun yang digunakan dalam penelitian ini adalah ellips, cordate, ovate, dan lanceolate. Data yang digunakan sebanyak 200 citra daun dengan jumlah citra masing-masing kelas sebanyak 50. Probabilistic Neural Network digunakan untuk mengklasifikasi bentuk daun. Didapatkan akurasi terbaik CCD sebesar 96.67%, jauh lebih besar dibanding akurasi terbaik CCG sebesar 60.00%.
       
      This research compares the CCG (Centroid Contour Gradient) and CCD (Centroid Contour Distance) algorithms for feature extraction in leaf shape recognition. CCG and CCD are algorithm of shape representation based on contour. Contour is an important cue for object recognition. CCG calculates gradient between pairs of boundary points corresponding to interval angle while the CCD calculates the distance between the midpoint and the boundary points. Leaf shapes that used in this study are elliptical, cordate, ovate, and lanceolate. We used 200 Indonesian tropical leaf images. Each class consists of 50 images. Probabilistic Neural Network (PNN) is used to classify leaf shape. The experimental result shows that CCD has better accuracy than CCG. The accuracy achieved by CCD and CCG are 96.67 % and 60.00% respectively.
       
      URI
      http://repository.ipb.ac.id/handle/123456789/71572
      Collections
      • UT - Computer Science [2482]

      Copyright © 2020 Library of IPB University
      All rights reserved
      Contact Us | Send Feedback
      Indonesia DSpace Group 
      IPB University Scientific Repository
      UIN Syarif Hidayatullah Institutional Repository
      Universitas Jember Digital Repository
        

       

      Browse

      All of IPB RepositoryCollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

      My Account

      Login

      Application

      google store

      Copyright © 2020 Library of IPB University
      All rights reserved
      Contact Us | Send Feedback
      Indonesia DSpace Group 
      IPB University Scientific Repository
      UIN Syarif Hidayatullah Institutional Repository
      Universitas Jember Digital Repository