View Item 
      •   IPB Repository
      • Dissertations and Theses
      • Undergraduate Theses
      • UT - Faculty of Mathematics and Natural Sciences
      • UT - Computer Science
      • View Item
      •   IPB Repository
      • Dissertations and Theses
      • Undergraduate Theses
      • UT - Faculty of Mathematics and Natural Sciences
      • UT - Computer Science
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.

      LAI, SPAD, and Yield of Paddy Rice Prediction from Data Hyperspectral Using Partial Least Square Regression (PLSR) Algorithm

      Prediksi LAI, SPAD, dan Yield Padi Menggunakan Data Hyperspectral dengan Algoritme Partial Least Square Regression (PLSR)

      Thumbnail
      View/Open
      Fulltext (1.136Mb)
      Abstract (280.8Kb)
      BAB I (369.2Kb)
      BAB II (599.3Kb)
      BAB III (440.6Kb)
      BAB IV (370.8Kb)
      BAB V (340.9Kb)
      Cover (279.1Kb)
      Daftar Pustaka (326.7Kb)
      Lampiran (555.7Kb)
      Date
      2010
      Author
      Puspitasari, Yulianti
      Adrianto, Hari Agung
      Mulyono, Sidik
      Metadata
      Show full item record
      Abstract
      Hyperspectral is a new technology in remote sensing which exploits hundred of bands. Pusat Teknologi Inventarisasi Sumber Daya Alam Badan Pengkajian dan Penerapan Teknologi (PTISDA BPPT) applies hyperspectral in agriculture for yearly yield prediction. In this research, Leaf Area Index (LAI), number of chlorophyll (SPAD), and yield paddy yearly has been predicted with data hyperspectral using partial least square regression (PLSR) algorithm. Region used are Indramayu and Subang; the growth periods of paddy are vegetative, reproductive and ripening, while the heights of the spectral acquisition are 10 cm, 50 cm, and Hymap (2000 m). The data is owned PTISDA BPPT in cooperation with ERSDAC Japan. This research predicted R2 maximum for LAI 0.9500, SPAD 0.5262, and yield 0.4921. By using PLSR, LAI values can be predicted quite well, but not for the SPAD values and yield. This could be due to measurement error in the instrument of SPAD, while errors of yield are probably due to using a small area to represent a large area.
      URI
      http://repository.ipb.ac.id/handle/123456789/62189
      Collections
      • UT - Computer Science [2482]

      Copyright © 2020 Library of IPB University
      All rights reserved
      Contact Us | Send Feedback
      Indonesia DSpace Group 
      IPB University Scientific Repository
      UIN Syarif Hidayatullah Institutional Repository
      Universitas Jember Digital Repository
        

       

      Browse

      All of IPB RepositoryCollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

      My Account

      Login

      Application

      google store

      Copyright © 2020 Library of IPB University
      All rights reserved
      Contact Us | Send Feedback
      Indonesia DSpace Group 
      IPB University Scientific Repository
      UIN Syarif Hidayatullah Institutional Repository
      Universitas Jember Digital Repository